Microsoft MVP성태의 닷넷 이야기
스크립트: 51. 파이썬 2.x에서의 동적 함수 추가 [링크 복사], [링크+제목 복사],
조회: 11962
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

(시리즈 글이 3개 있습니다.)
스크립트: 51. 파이썬 2.x에서의 동적 함수 추가
; https://www.sysnet.pe.kr/2/0/13379

스크립트: 52. 파이썬 3.x에서의 동적 함수 추가
; https://www.sysnet.pe.kr/2/0/13380

스크립트: 62. 파이썬 - class의 정적 함수를 동적으로 교체
; https://www.sysnet.pe.kr/2/0/13434




파이썬 2.x에서의 동적 함수 추가

이번 글의 모든 예제 코드는 Python 2.7.17에서 테스트된 것입니다.




파이썬에서 동적으로 함수를 추가하는 것은 자바스크립트만큼이나 간단합니다. 아래는, 새로운 함수를 인스턴스/정적/클래스 레벨로 MyObject에 추가하는 것을 보여줍니다.

def f_instance(self, arg):
    print 'f_instance', self, arg

def f_static(arg):
    print 'f_static', arg

def f_class(cls, arg):
    print 'f_class', cls, arg

class MyObject:
    def __init__(self):
        pass

MyObject.fi = f_instance
MyObject.fs = staticmethod(f_static)
MyObject.fc = classmethod(f_class)

myobj = MyObject()

myobj.fi('test')  # 인스턴스 함수 호출
myobj.fs('test')  # 정적 함수 호출
myobj.fc('test')  # 클래스 함수 호출

print type(MyObject.fi)
print type(MyObject.fs)
print type(MyObject.fc)

/* 출력 결과
f_instance <__main__.MyObject instance at 0x7f07092a1af0> test
f_static test
f_class __main__.MyObject test

<type 'instancemethod'>
<type 'function'>
<type 'instancemethod'>
*/

위의 코드 중 인스턴스 함수의 경우에는 types 모듈에 구현된 MethodType (또는 동일한 역할을 하는 UnboundMethodType)을 경유해,

# types.py

# ...[생략]...

class _C:
    def _m(self): pass

# ...[생략]...

UnboundMethodType = type(_C._m)         # Same as MethodType
_x = _C()
MethodType = type(_x._m)

구현하는 것도 가능합니다. MethodType은 Python 2.x의 경우 인자 3개를 받는데,

MethodType(function, instance, class)

인자만으로 보면 인스턴스와 클래스 함수를 재정의할 수 있을 것 같지만 실제로는 무조건 인스턴스 함수만을 정의할 수 있으며 단지 그 대상이 클래스 전체에 정의할 것이냐, 인스턴스에 한해 정의할 것이냐를 정하게 됩니다.

from types import MethodType

def f_instance(self, arg):
    print 'f_instance', self, arg

def f_instance2(self, arg):
    print 'f_instance2', self, arg

class MyObject:
    def __init__(self):
        pass

MyObject.fi = MethodType(f_instance, None, MyObject) # 클래스 범위로 메서드를 추가

myobj = MyObject()
myobj.fi2 = MethodType(f_instance2, myobj, None) # 인스턴스 범위로 메서드를 추가

myobj.fi('test')
myobj.fi2('test2')

myobj2 = MyObject()
myobj2.fi2('test3')  # (당연히) 예외 발생: AttributeError: MyObject instance has no attribute 'fi2'

주의해야 할 점이 있다면 MethodType의 인자 위치가 중요하지 않은 듯도 한데,

myobj = MyObject()

MyObject.fi = MethodType(f_instance, None, MyObject)
MyObject.fi2 = MethodType(f_instance, myobj, None)

myobj.fi('test')  # 정상 호출
myobj.fi2('test2')  # 정상 호출

myobj2 = MyObject()
myobj2.fi('test3')  # 정상 호출
myobj2.fi2('test4')  # 정상 호출

하지만 출력 결과를 보면,

f_instance <__main__.MyObject instance at 0x7f81ed4b7a00> test
f_instance <__main__.MyObject instance at 0x7f81ed4b7a00> test2
f_instance <__main__.MyObject instance at 0x7f81ed4b7a50> test3
f_instance <__main__.MyObject instance at 0x7f81ed4b7a00> test4

MyObject.fi2 함수의 경우 myobj2 인스턴스로 호출이 되었지만 MethodType 정의 시 넘겨 준 myobj 인자에 영향을 받고 있습니다. 혹은 반대로 MyObject가 아닌 myobj에 할당해보면,

myobj = MyObject()

myobj.fi = MethodType(f_instance, None, MyObject)
myobj.fi2 = MethodType(f_instance, myobj, None)

myobj.fi('test')  # 예외 발생 TypeError: unbound method f_instance() must be called with MyObject instance as first argument (got str instance instead)
myobj.fi2('test2')  # 정상 동작

f1 호출 시 첫 번째 인자가 (self에 해당하는) 인스턴스가 아니라는 오류를 내고 있는데요, 그래서 다음과 같이 우회해서 호출할 수는 있습니다.

myobj.fi(myobj, 'test')  # 정상 동작

아마도 이런 혼란 때문인지 파이썬 3.x의 경우에는 MethodType이 "(function, instance_or_class)" 2개의 인자만 받도록 바뀌었습니다.




위에서는, 전역 함수를 가져다 클래스의 함수로 추가했는데요, 그렇다면 다른 클래스로부터 가져오는 것도 가능할까요? 실제로 구현해 보면 정적 함수를 제외하고는 다소 직관적이지 않은 형태로 동작하게 됩니다.

class D:
    def __init__(self):
        pass

    def f_instance(self, arg):
        print 'D.f_instance', self, arg

    @staticmethod
    def f_static(arg):
        print 'D.f_static', arg

    @classmethod
    def f_class(cls_d, cls_my, arg):  # 2개의 class 인자
        print 'D.f_class', cls_d, cls_my, arg


class MyObject:
    def __init__(self):
        pass

MyObject.fi = D.f_instance
MyObject.fs = staticmethod(D.f_static)
MyObject.fc = classmethod(D.f_class)

myobj = MyObject()

dobj = D()
myobj.fi(dobj, 'test1')  # D 타입의 인스턴스를 함께 전달해야 함
myobj.fs('test2')
myobj.fc('test3')  # f_class 함수는 2개의 클래스를 받는 인자를 함께 정의해야 함

/* 실행 결과
D.f_instance <__main__.D instance at 0x7f0e95377b90> test1
D.f_static test2
D.f_class __main__.D __main__.MyObject test3
*/

보다시피, 실행 결과를 보면 MyObject에 추가한 fi 인스턴스 함수의 경우 D 타입의 인스턴스를 함께 전달해야 하는 문제가 있고, fc 클래스 함수의 경우에는 2개의 추가 클래스 변수를 받도록 f_class를 정의해야 하는 이상한 변칙이 있습니다.




이전 예제에서는 인스턴스/클래스 함수의 동작이 다소 이상했는데요, 이 중에서 인스턴스 함수의 경우에는 약간의 우회적인 방법을 통해 다음과 같이 개선할 수 있습니다.

from functools import partial
from types import MethodType

class D:
    def __init__(self):
        pass

    def fi(self, arg):
        print 'D.fi', self, arg


class MyObject:
    def __init__(self):
        self.proxy = D()


def call_proxy(name, self, *args):
    return getattr(self.proxy, name)(*args)


method_name = 'fi'
p = partial(call_proxy, method_name)
p.__name__ = method_name
p.__doc__ = getattr(D, method_name).__doc__
m = MethodType(p, None, MyObject)
setattr(MyObject, method_name, m)

myobj = MyObject()

myobj.fi('test1') 

/* 출력 결과
D.fi <__main__.D instance at 0x7f4503a90a50> test1
*/

myobj.fi 호출 시 별도의 D 인스턴스를 제거했는데요, 주의할 것은 그렇다고 해서 D.fi 함수의 self 타입이 MyObject는 아니라는 점입니다.

실제로 저런 트릭을 사용하고 있는 것이 Python 2.x에서 제공하는 socket 모듈입니다. 원래 socket 모듈에서 제공하는 socket은,

import socket

print socket.socket  # 출력 결과: <class 'socket._socketobject'>

같은 모듈에 정의된 _socketobject인데요,

class _socketobject(object):

    __doc__ = _realsocket.__doc__

    __slots__ = ["_sock", "__weakref__"] + list(_delegate_methods)

    def __init__(self, family=AF_INET, type=SOCK_STREAM, proto=0, _sock=None):
        if _sock is None:
            _sock = _realsocket(family, type, proto)
        self._sock = _sock
        ...[생략]...

    def close(self, _closedsocket=_closedsocket,
        ...[생략]...

    def accept(self):
        ...[생략]...

    def dup(self):
        ...[생략]...

    def makefile(self, mode='r', bufsize=-1):
        ...[생략]...

    ...[생략]...

보는 바와 같이 connect 함수 등은 _socketobject 타입에 정의돼 있지 않습니다. 그럼에도 이런 함수들이 _socketobject 타입에서 제공되는 이유는 다음과 같이 동적으로 (socket 모듈의 socket이 아닌, 내장 _socket 모듈의) socket으로부터 가져온 함수들을 연결하기 때문입니다.

_socketmethods = (
    'bind', 'connect', 'connect_ex', 'fileno', 'listen',
    'getpeername', 'getsockname', 'getsockopt', 'setsockopt',
    'sendall', 'setblocking',
    'settimeout', 'gettimeout', 'shutdown')

def meth(name,self,*args):
    return getattr(self._sock,name)(*args)

for _m in _socketmethods:
    p = partial(meth,_m)
    p.__name__ = _m
    p.__doc__ = getattr(_realsocket,_m).__doc__
    m = MethodType(p,None,_socketobject)
    setattr(_socketobject,_m,m)




이와 관련해 재미있는 점이 있다면, qualname을 구하는 데 있어 같은 socket에서 제공하는 함수라도 예기치 않은 동작이 발생한다는 것입니다.

from qualname import qualname  # 파이썬 3.x의 x.__qualname__을 파이썬 2.x에서 대체 사용
import socket

print qualname(socket.socket.accept)  # 출력: _socketobject.accept
print qualname(socket.socket.connect)  # 예외 발생

connect에 대한 예외 메시지는 다음과 같습니다.

Traceback (most recent call last):
  File "test.py", line 10, in <module>
    print qualname(socket.socket.connect)
  File "/usr/local/lib/python2.7/dist-packages/qualname.py", line 50, in qualname
    return obj.__qualname__  # raises a sensible error
AttributeError: 'functools.partial' object has no attribute '__qualname__'

이런 socket 처리와 유사하게 만든, 간략한 재현 코드는 다음과 같이 작성할 수 있습니다.

from qualname import qualname
from types import MethodType

class D:
    def __init__(self):
        pass

    def fi(self, arg):
        print 'D.fi', self, arg


class MyObject:
    def __init__(self):
        pass

dobj = D()
m = MethodType(D.fi, dobj, MyObject)
setattr(MyObject, 'fi', m)

myobj = MyObject()
dobj = D()

myobj.fi('test1')  # 출력: D.fi <__main__.D instance at 0x7fe3e1b7f960> test1

print qualname(myobj.fi)  # 예외 발생 AttributeError: 'function' object has no attribute '__qualname__'




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 6/24/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  92  93  94  95  96  97  98  [99]  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11494정성태4/16/201816396개발 환경 구성: 362. Azure Web Apps(App Services)에 사용자 DNS를 지정하는 방법
11493정성태4/16/201818170개발 환경 구성: 361. Azure Web App(App Service)의 HTTP/2 프로토콜 지원
11492정성태4/13/201816192개발 환경 구성: 360. Azure Active Directory의 사용자 도메인 지정 방법
11491정성태4/13/201819394개발 환경 구성: 359. Azure 가상 머신에 Web Application을 배포하는 방법
11490정성태4/12/201818341.NET Framework: 739. .NET Framework 4.7.1의 새 기능 - Configuration builders [1]파일 다운로드1
11489정성태4/12/201816087오류 유형: 463. 윈도우 백업 오류 - a Volume Shadow Copy Service operation failed.
11488정성태4/12/201819776오류 유형: 462. Unhandled Exception in Managed Code Snap-in - FX:{811FD892-5EB4-4E73-A147-F1E079E36C4E}
11487정성태4/12/201817990디버깅 기술: 115. windbg - 닷넷 메모리 덤프에서 정적(static) 필드 값을 조사하는 방법
11486정성태4/11/201817105오류 유형: 461. Error MSB4064 The "ComputeOutputOnly" parameter is not supported by the "VsTsc" task
11485정성태4/11/201825061.NET Framework: 738. C# - Console 프로그램이 Ctrl+C 종료 시점을 감지하는 방법파일 다운로드1
11484정성태4/11/201826344.NET Framework: 737. C# - async를 Task 타입이 아닌 사용자 정의 타입에 적용하는 방법파일 다운로드1
11483정성태4/10/201829615개발 환경 구성: 358. "Let's Encrypt"에서 제공하는 무료 SSL 인증서를 IIS에 적용하는 방법 (2) [1]
11482정성태4/10/201821542VC++: 126. CUDA Core 수를 알아내는 방법
11481정성태4/10/201833945개발 환경 구성: 357. CUDA의 인덱싱 관련 용어 - blockIdx, threadIdx, blockDim, gridDim
11480정성태4/9/201823815.NET Framework: 736. C# - API를 사용해 Azure에 접근하는 방법 [2]파일 다운로드1
11479정성태4/9/201818701.NET Framework: 735. Azure - PowerShell로 Access control(IAM)에 새로운 계정 만드는 방법
11478정성태11/8/201921717디버깅 기술: 115. windbg - 덤프 파일로부터 PID와 환경변수 등의 정보를 구하는 방법 [1]
11477정성태4/8/201818763오류 유형: 460. windbg - sos 명령어 수행 시 c0000006 오류 발생
11476정성태4/8/201820213디버깅 기술: 114. windbg - !threads 출력 결과로부터 닷넷 관리 스레드(System.Threading.Thread) 객체를 구하는 방법
11475정성태3/28/201822853디버깅 기술: 113. windbg - Thread.Suspend 호출 시 응용 프로그램 hang 현상에 대한 덤프 분석
11474정성태3/27/201821071오류 유형: 459. xperf: error: TEST.Event: Invalid flags. (0x3ec).
11473정성태3/22/201826021.NET Framework: 734. C# - Thread.Suspend 호출 시 응용 프로그램 hang 현상파일 다운로드2
11472정성태3/22/201819650개발 환경 구성: 356. GTX 1070, GTX 960, GT 640M의 cudaGetDeviceProperties 출력 결과
11471정성태3/20/201822850VC++: 125. CUDA로 작성한 RGB2RGBA 성능 [1]파일 다운로드1
11470정성태3/20/201825619오류 유형: 458. Visual Studio - CUDA 프로젝트 빌드 시 오류 C1189, expression must have a constant value
11469정성태3/19/201818514오류 유형: 457. error MSB3103: Invalid Resx file. Could not load file or assembly 'System.Windows.Forms, ...' or one of its dependencies.
... 91  92  93  94  95  96  97  98  [99]  100  101  102  103  104  105  ...