Microsoft MVP성태의 닷넷 이야기
닷넷: 2247. C# - tensorflow 연동 (MNIST 예제) [링크 복사], [링크+제목 복사],
조회: 9493
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

C# - tensorflow 연동 (MNIST 예제)

요즘 접하기 쉬운 예제로 MNIST 손글씨 인식을 C#에서 tensorflow와 연동해 만들어 보겠습니다. 여기서 중요한 것은, Model을 구해야 하는 것인데요 ^^ 그 부분은 그냥 파이썬 환경에서 자유롭게 코딩해 구하기만 하면 됩니다.

예를 들어, 아래의 MNIST 예제는 my_mnist_model.keras 파일로 모델을 저장하고 있습니다.

// 케라스 창시자에게 배우는 딥러닝
// https://github.com/gilbutITbook/080315/blob/main/chapter02_mathematical-building-blocks.ipynb

import setuptools.dist
from tensorflow.keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

from tensorflow import keras
from tensorflow.keras import layers

model = keras.Sequential([
    layers.Dense(512, activation='relu'),
    layers.Dense(10, activation='softmax')
    ])

model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255

model.fit(train_images, train_labels, epochs=5, batch_size=128)

test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f'{test_acc}')

# https://www.tensorflow.org/tutorials/keras/save_and_load?hl=ko
model.save('my_mnist_model.keras')

my_mnist_model.keras 파일의 크기는 3MB 정도 됩니다. 이렇게 구한 Model 파일은 C# 프로젝트에 추가/배포해, 실행 시 C#에서 Python.NET을 이용해 저 Model 파일을 로드해 활용할 것입니다.




자, 그럼 본격적으로 위에서 만든 MNIST 필기체 인식 Model을 C#에서 Python과 연동해 볼까요? ^^

이를 위해, 모델을 이용한 predict 코드를 호출하는 파이썬 코드를 다음과 같이 만들어 줍니다.

# mnist_predict.py

import setuptools.dist
import tensorflow as tf
import numpy as np

model = tf.keras.models.load_model('my_mnist_model.keras')

def predict(img):
    imgs = np.expand_dims(img, axis=0)
    predictions = model.predict(imgs, verbose=0)
    predict_number = np.argmax(predictions[0])
    return (predict_number.item(), predictions[0][predict_number].item())

위의 predict 함수는 model.predict 호출 시 해당 이미지로 판정되는 숫자와 그 확률을 반환합니다.

그럼, 이제 Python.NET을 이용한 C# 코드에서는 이를 호출하는 코드만 다음과 같이 작성해 주면 됩니다.

using Python.Runtime;

namespace ConsoleApp3;

internal class Program
{
    static void Main(string[] args)
    {
        Runtime.PythonDLL = @".\python\python312.dll";

        PythonEngine.Initialize();

        using (_ = Py.GIL())
        {
            DisableTensorflowLog();

            dynamic npModule = Py.Import("numpy");

            {
                dynamic sys = Py.Import("sys");
                string dirPath = Path.GetDirectoryName(typeof(Program).Assembly.Location) ?? Environment.CurrentDirectory;
                sys.path.append(dirPath);
            }

            float[]? testImgArray = // ... 28x28 크기의 이미지 데이터 ...;
            dynamic npArray = npModule.array(testImgArray);

            {
                var pyFile = Py.Import(Path.GetFileNameWithoutExtension("mnist_predict"));

                dynamic results = pyFile.InvokeMethod("predict", npArray);

                int expected = results[0];
                double percentage = results[1];

                Console.WriteLine($"{expected}: {percentage:P0}");
            }
        }

        PythonEngine.Shutdown();
    }
}

만약 testImgArray에 7과 비슷한 숫자의 이미지를 담고 있는 28x28 크기의 버퍼가 있다면 위의 프로그램을 실행 시 "7: 100%"와 유사한 출력이 나옵니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)

만약 지난 글에 설명한 대로 CopyToOutputDirectory 설정을 했다면, 위의 예제를 실행했을 때 "C:\temp\ConsoleApp3\net8.0" 디렉터리에 출력이 모였을 것입니다. 해당 출력 파일만 다른 컴퓨터에 그대로 복사하면 (당연히 별도의 파이썬 설치 없이) 정상적으로 실행까지 됩니다.

한 가지 문제점이라면, 위의 경우 net8.0 출력에 있는 전체 바이너리의 크기가 (python + tensorflow까지 포함하므로) 1.6GB 정도, 압축하면 480MB 정도 됩니다. 만약 대상 컴퓨터에 파이썬 tensorflow 환경이 설치돼 있다면 이 용량을 없앨 수 있지만 그렇지 않은 경우라면... 뭔가 있어 보이는 ^^ 응용 프로그램의 크기를 자랑합니다.




참고로, 위의 코드를 Windows 10+ 환경에서 Python 3.12.0 버전으로 실행하면 load_model 시에 다음과 같은 오류가 발생합니다.

Traceback (most recent call last):
  File "C:\temp\ConsoleApp3\net8.0\python\test.py", line 36, in <module>
    model2 = tf.keras.models.load_model('my_mnist_model.keras')
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\temp\ConsoleApp3\net8.0\python\Lib\site-packages\keras\src\saving\saving_api.py", line 176, in load_model
    return saving_lib.load_model(
           ^^^^^^^^^^^^^^^^^^^^^^
  File "C:\temp\ConsoleApp3\net8.0\python\Lib\site-packages\keras\src\saving\saving_lib.py", line 152, in load_model
    return _load_model_from_fileobj(
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\temp\ConsoleApp3\net8.0\python\Lib\site-packages\keras\src\saving\saving_lib.py", line 207, in _load_model_from_fileobj
    _raise_loading_failure(error_msgs)
  File "C:\temp\ConsoleApp3\net8.0\python\Lib\site-packages\keras\src\saving\saving_lib.py", line 295, in _raise_loading_failure
    raise ValueError(msg)
ValueError: A total of 1 objects could not be loaded. Example error message for object <keras.src.optimizers.adam.Adam object at 0x000001CBB0BCFBF0>:

The shape of the target variable and the shape of the target value in `variable.assign(value)` must match. variable.shape=(10,), Received: value.shape=(512, 10). Target variable: <KerasVariable shape=(10,), dtype=float32, path=adam/dense_1_bias_momentum>

List of objects that could not be loaded:
[<keras.src.optimizers.adam.Adam object at 0x000001CBB0BCFBF0>]))

3.12.2 이상의 버전에서 하면 오류가 발생하지 않습니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 4/24/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 76  77  [78]  79  80  81  82  83  84  85  86  87  88  89  90  ...
NoWriterDateCnt.TitleFile(s)
11986정성태7/17/201916965오류 유형: 557. 드라이브 문자를 할당하지 않은 파티션을 탐색기에서 드라이브 문자와 함께 보여주는 문제
11985정성태7/17/201917114개발 환경 구성: 452. msbuild - csproj에 환경 변수 조건 사용 [1]
11984정성태7/9/201925651개발 환경 구성: 451. Microsoft Edge (Chromium)을 대상으로 한 Selenium WebDriver 사용법 [1]
11983정성태7/8/201914967오류 유형: 556. nodemon - 'mocha' is not recognized as an internal or external command, operable program or batch file.
11982정성태7/8/201915036오류 유형: 555. Visual Studio 빌드 오류 - result: unexpected exception occured (-1002 - 0xfffffc16)
11981정성태7/7/201918102Math: 64. C# - 3층 구조의 신경망(분류)파일 다운로드1
11980정성태7/7/201928268개발 환경 구성: 450. Visual Studio Code의 Java 확장을 이용한 간단한 프로젝트 구축파일 다운로드1
11979정성태7/7/201918542개발 환경 구성: 449. TFS에서 gitlab/github등의 git 서버로 마이그레이션하는 방법
11978정성태7/6/201917742Windows: 161. 계정 정보가 동일하지 않은 PC 간의 인증을 수행하는 방법 [1]
11977정성태7/6/201922340오류 유형: 554. git push - error: RPC failed; HTTP 413 curl 22 The requested URL returned error: 413 Request Entity Too Large
11976정성태7/4/201916743오류 유형: 553. (잘못 인증 한 후) 원격 git repo 재인증 시 "remote: HTTP Basic: Access denied" 오류 발생
11975정성태7/4/201925510개발 환경 구성: 448. Visual Studio Code에서 콘솔 응용 프로그램 개발 시 "입력"받는 방법
11974정성태7/4/201921256Linux: 22. "Visual Studio Code + Remote Development"로 윈도우 환경에서 리눅스(CentOS 7) C/C++ 개발
11973정성태7/4/201919977Linux: 21. 리눅스에서 공유 라이브러리가 로드되지 않는다면?
11972정성태7/3/201923795.NET Framework: 847. JAVA와 .NET 간의 AES 암호화 연동 [1]파일 다운로드1
11971정성태7/3/201920032개발 환경 구성: 447. Visual Studio Code에서 OpenCvSharp 개발 환경 구성
11970정성태7/2/201918629오류 유형: 552. 웹 브라우저에서 파일 다운로드 후 "Running security scan"이 끝나지 않는 문제
11969정성태7/2/201919128Math: 63. C# - 3층 구조의 신경망파일 다운로드1
11968정성태7/1/201925823오류 유형: 551. Visual Studio Code에서 Remote-SSH 연결 시 "Opening Remote..." 단계에서 진행되지 않는 문제 [1]
11967정성태7/1/201919868개발 환경 구성: 446. Synology NAS를 Windows 10에서 iSCSI로 연결하는 방법
11966정성태6/30/201918856Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화파일 다운로드1
11965정성태6/30/201919401.NET Framework: 846. C# - 2차원 배열을 1차원 배열로 나열하는 확장 메서드파일 다운로드1
11964정성태6/30/201920978Linux: 20. C# - Linux에서의 Named Pipe를 이용한 통신
11963정성태6/29/201920680Linux: 19. C# - .NET Core Unix Domain Socket 사용 예제
11962정성태6/27/201918327Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류파일 다운로드1
11961정성태6/27/201917868Graphics: 37. C# - PLplot - 출력 모음(Family File Output)
... 76  77  [78]  79  80  81  82  83  84  85  86  87  88  89  90  ...