Microsoft MVP성태의 닷넷 이야기
닷넷: 2316. C# - Port I/O를 이용한 PCI Configuration Space 정보 열람 [링크 복사], [링크+제목 복사],
조회: 2840
글쓴 사람
정성태 (seongtaejeong at gmail.com)
홈페이지
첨부 파일

(시리즈 글이 4개 있습니다.)
디버깅 기술: 217. WinDbg - PCI 장치 열거
; https://www.sysnet.pe.kr/2/0/13873

닷넷: 2315. C# - PCI 장치 열거 (레지스트리, SetupAPI)
; https://www.sysnet.pe.kr/2/0/13877

닷넷: 2316. C# - Port I/O를 이용한 PCI Configuration Space 정보 열람
; https://www.sysnet.pe.kr/2/0/13881

닷넷: 2317. C# - Memory Mapped I/O를 이용한 PCI Configuration Space 정보 열람
; https://www.sysnet.pe.kr/2/0/13883




C# - Port I/O를 이용한 PCI Configuration Space 정보 열람

지난 글에서,

WinDbg - PCI 장치 열거
; https://www.sysnet.pe.kr/2/0/13873

"PCI Configuration Space" 정보를 Port I/O와 Memory Mapped I/O를 이용해 조회할 수 있다고 했는데요, 이들 중 Port I/O를 이용한 방법을 지난번에 만들어 둔 device driver의 도움을 받아,

커널 메모리를 읽고 쓰는 NT Legacy driver와 C# 클라이언트 프로그램
; https://www.sysnet.pe.kr/2/0/12104

C# 코드로 가져와 보겠습니다. ^^




Port를 이용한 PCI Configuration Space 영역을 읽는 방법은 다음과 같습니다.

// 우선 0xcf8 포트로 읽어낼 PCI 장치와 offset을 지정하고,
(port write), 0xcf8, 0x80000000 | (bus << 16) | (device << 11) | (function << 8) | offset

// 0xcfc 포트로 4바이트 데이터를 읽어옵니다.
(port read), 0xcfc

0xcf8 포트에 쓰는 데이터 형식은 지난 글에서도 이미지로 설명한 적이 있는데요,

pci_tree_3.png

// PCI Configuration Address Register에 쓸 데이트 포맷

bit 0~1: 00
bit 2~7: Register Offset
bit 8~10: Function Number
bit 11~15: Device Number
bit 16~23: Bus Number
bit 24~30: Reserved
bit 31: Enable Bit

Bus, Device, Function을 제외하고 Register Offset으로 할당된 비트가 6비트지만, 사실 0~1 비트도 Register offset 영역에 포함되므로 엄밀히는 8비트 영역의 주소를 지정할 수 있습니다. 즉, Port I/O를 이용한 방식에서는 CAM(Configuration Access Mechanism)의 256 바이트까지만 읽어올 수 있고 PCIe에서 확장된 4KB 영역 전체를 읽어낼 수는 없습니다.

게다가 0~1 비트가 무조건 0이라는 점에서 Register offset 주소 지정은 최소 4바이트 단위로 지정해야 한다는 것을 유의하시면 됩니다.




그리하여, PCI 장치마다 0 ~ 256 바이트만큼을 읽어낼 수 있다는 것은 알았고, Configuration Address Register의 나머지 영역에 해당하는 Bus, Device, Function (줄여서 BDF) 값을 알아내는 것이 남았는데요, 즉, 원하는 PCI 장치의 Configuration Space를 읽어오려면, 이들 값을 알고 있어야 합니다.

그래서 지난 글을 통해 PCI 장치를 열거하는 방법을 알아본 건데요,

C# - PCI 장치 열거 (레지스트리, SetupAPI)
; https://www.sysnet.pe.kr/2/0/13877

한 가지 아쉬운 점은, 레지스트리를 이용하든 / SetupAPI를 이용하든 BDF 값을 필드별로 정확히 알아낼 수는 없고 문자열로부터 추출해야 한다는 것입니다.

가령 SetupAPI의 경우 지난 글에서는 SetupDiGetDeviceProperty를 이용해 DEVPROPKEY에 해당하는 값들을 구해왔는데요,

DEVPROPKEY structure
; https://learn.microsoft.com/en-us/windows-hardware/drivers/install/devpropkey

Property Keys
; https://learn.microsoft.com/en-us/windows-hardware/drivers/install/property-keys

"Unified Device Property Model Properties"로 나열되는 적절한 DEVPROPKEY 중에는 (제가 찾아본 한계로) Device, Function 값을 알 수 있는 키는 없었습니다. 대신, SetupDiGetDeviceRegistryProperty를 이용해 SPDRP_LOCATION_INFORMATION을 이용하면 다음과 같이 문자열로 추출하는 것이 가능합니다.

// SPDRP_LOCATION_INFORMATION으로 반환한 예 (문자열)

"PCI bus 0, device 2, function 0"

참고로, 단순히 BDF 값만 알아내는 것이라면 레지스트리를 이용하는 것도 좋은 방법입니다. 실제로 Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\ 하위의 PCI 장치를 살펴보면 이런 식으로 LocationInformation 값이 주어지는데요,

@System32\drivers\pci.sys,#65536;PCI bus %1, device %2, function %3;(1,0,1)

마지막의 (1,0,1) 값이 각각 (Bus, Device, Function)을 나타냅니다.




이렇게 해서 해당 머신에 장착된 PCI 장치의 BDF 값을 열거했으면 이제 Port I/O를 이용해 Configuration Space를 읽어오는 것은 어렵지 않습니다.

static unsafe void Main(string[] args)
{
    using (KernelMemoryIO portIo = new KernelMemoryIO())
    {
        if (portIo.IsInitialized == false)
        {
            Console.WriteLine("Failed to open device");
            return;
        }

        foreach (BDF bdf in PciHelper.EnumeatePCI())
        {
            Console.WriteLine($"Bus: {bdf.Bus}, Device: {bdf.Device}, Function: {bdf.Function}");

            List<byte> bytes = new List<byte>();
            for (uint where = 0; where < 256; where += 4)
            {
                uint configCommand = CONFIG_CMD(bdf.Bus, bdf.Device, bdf.Function, where);
                portIo.Outportl(0xcf8, configCommand);

                uint data = portIo.Inportl(0xcfc, out int errorNo);

                if (errorNo != 0)
                {
                    Console.WriteLine($"Error: {errorNo}");
                    break;
                }
                else
                {
                    byte[] buffer = BitConverter.GetBytes(data);
                    bytes.AddRange(buffer);
                }
            }

            for (int i = 0; i < bytes.Count; i++)
            {
                Console.Write($"{bytes[i]:x2} ");
                if (i % 16 == 15)
                {
                    Console.WriteLine();
                }
            }

            Console.WriteLine();
        }
    }
}

위의 프로그램을 Hyper-V Gen1 VM에서 실행하면 대충 이런 결과가 나옵니다.

c:\ex> ConsoleApp1.exe
Bus: 0, Device: 7, Function: 1
86 80 10 71 07 00 00 02 01 00 01 06 00 00 80 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...[생략]...
00 00 00 00 00 00 00 00 30 0f 00 00 00 00 00 00

Bus: 0, Device: 7, Function: 0
86 80 10 71 07 00 00 02 01 00 01 06 00 00 80 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...[생략]...
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Bus: 0, Device: 0, Function: 0
86 80 92 71 06 00 00 02 03 00 00 06 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...[생략]...
00 00 00 00 00 00 00 00 20 0f 00 00 00 00 00 00

참고로, 그것의 첫 64바이트는 포맷이 고정돼 있기 때문에,

pci_config_space_struct_1.png

이에 맞춰 구조체를 정의해 출력하면 좀 더 다듬어진 결과를 얻을 수 있습니다. ^^

byte[] configSpaces = bytes.ToArray();
fixed (byte* ptr = configSpaces)
{
    PCIConfigSpace pciInfo = Marshal.PtrToStructure<PCIConfigSpace>((IntPtr)ptr);
    Console.WriteLine($"VendorId: {pciInfo.VendorId:x4}");
    Console.WriteLine($"DeviceId: {pciInfo.DeviceId:x4}");
}

[System.Runtime.CompilerServices.InlineArray(3)]
public struct ClassCode
{
    private byte _element0; // public 접근을 허용하지만 실용적이지 않음
                            // 필드는 단 한 개만 정의할 수 있음
}

[StructLayout(LayoutKind.Sequential)]
public struct PCIConfigSpace
{
    public ushort VendorId;
    public ushort DeviceId;

    public ushort Command;
    public ushort Status;

    public byte RevisionId;
    public ClassCode ClassCode;

    public byte CacheLineS;
    public byte LatTimer;
    public byte HeaderType;
    public byte BIST;

    public uint BAR1;
    public uint BAR2;
    public uint BAR3;
    public uint BAR4;
    public uint BAR5;
    public uint BAR6;

    public uint CardbusCISPointer;

    public ushort SubsystemVendorId;
    public ushort SubsystemId;

    public uint ExpansionROMBaseAddress;

    public byte CapPointer;
    public byte Reserved1;
    public byte Reserved2;
    public byte Reserved3;

    public uint Reserved;

    public byte InterruptLine;
    public byte InterruptPin;
    public byte MinGnt;
    public byte MaxLat;
}

뭐, 이 정도면 (DDK 영역이 아닌) 사용자 모드의 소프트웨어 개발자에게는 차고 넘칠 정도의 정보를 가져온 것이니 굳이 ECAM 4KB 영역까지 읽어낼 필요는 없을 것 같습니다. ^^

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




검색하다 보니, PCI 장치 열거를 통해 해당 환경이 XBox인지 확인하는 코드가 있군요. ^^

PCI 버스 접근
; https://blog.naver.com/kgh2797/90063940615

/* Check for Xbox by identifying device at PCI 0:0:0, if it's
* 0x10de/0x02a5 then we're running on an Xbox */

WRITE_PORT_ULONG((ULONG*) 0xcf8, CONFIG_CMD(0, 0, 0));
PciId = READ_PORT_ULONG((ULONG*) 0xcfc);
if (0x02a510de == PciId)
{
    XboxMachInit(CmdLine);
}
else
{
    PcMachInit(CmdLine);
}

#define CONFIG_CMD(bus, dev_fn, where) \
 (0x80000000 | (((ULONG)(bus)) << 16) | (((dev_fn) & 0x1F) << 11) | (((dev_fn) & 0xE0) << 3) | ((where) & ~3))





[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 2/12/2025]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 61  62  63  64  65  66  67  68  69  70  71  72  [73]  74  75  ...
NoWriterDateCnt.TitleFile(s)
12106정성태1/8/202019579VC++: 136. C++ - OSR Driver Loader와 같은 Legacy 커널 드라이버 설치 프로그램 제작 [1]
12105정성태1/8/202018079디버깅 기술: 153. C# - PEB를 조작해 로드된 DLL을 숨기는 방법
12104정성태1/7/202019254DDK: 9. 커널 메모리를 읽고 쓰는 NT Legacy driver와 C# 클라이언트 프로그램 [4]
12103정성태1/7/202022349DDK: 8. Visual Studio 2019 + WDK Legacy Driver 제작- Hello World 예제 [1]파일 다운로드2
12102정성태1/6/202018740디버깅 기술: 152. User 권한(Ring 3)의 프로그램에서 _ETHREAD 주소(및 커널 메모리를 읽을 수 있다면 _EPROCESS 주소) 구하는 방법
12101정성태1/5/202018928.NET Framework: 876. C# - PEB(Process Environment Block)를 통해 로드된 모듈 목록 열람
12100정성태1/3/202016409.NET Framework: 875. .NET 3.5 이하에서 IntPtr.Add 사용
12099정성태1/3/202019242디버깅 기술: 151. Windows 10 - Process Explorer로 확인한 Handle 정보를 windbg에서 조회 [1]
12098정성태1/2/202018996.NET Framework: 874. C# - 커널 구조체의 Offset 값을 하드 코딩하지 않고 사용하는 방법 [3]
12097정성태1/2/202017097디버깅 기술: 150. windbg - Wow64, x86, x64에서의 커널 구조체(예: TEB) 구조체 확인
12096정성태12/30/201919830디버깅 기술: 149. C# - DbgEng.dll을 이용한 간단한 디버거 제작 [1]
12095정성태12/27/201921517VC++: 135. C++ - string_view의 동작 방식
12094정성태12/26/201919225.NET Framework: 873. C# - 코드를 통해 PDB 심벌 파일 다운로드 방법
12093정성태12/26/201918795.NET Framework: 872. C# - 로딩된 Native DLL의 export 함수 목록 출력파일 다운로드1
12092정성태12/25/201917645디버깅 기술: 148. cdb.exe를 이용해 (ntdll.dll 등에 정의된) 커널 구조체 출력하는 방법
12091정성태12/25/201919917디버깅 기술: 147. pdb 파일을 다운로드하기 위한 symchk.exe 실행에 필요한 최소 파일 [1]
12090정성태12/24/201920014.NET Framework: 871. .NET AnyCPU로 빌드된 PE 헤더의 로딩 전/후 차이점 [1]파일 다운로드1
12089정성태12/23/201918907디버깅 기술: 146. gflags와 _CrtIsMemoryBlock을 이용한 Heap 메모리 손상 여부 체크
12088정성태12/23/201917892Linux: 28. Linux - 윈도우의 "Run as different user" 기능을 shell에서 실행하는 방법
12087정성태12/21/201918338디버깅 기술: 145. windbg/sos - Dictionary의 entries 배열 내용을 모두 덤프하는 방법 (do_hashtable.py) [1]
12086정성태12/20/201920788디버깅 기술: 144. windbg - Marshal.FreeHGlobal에서 발생한 덤프 분석 사례
12085정성태12/20/201918774오류 유형: 586. iisreset - The data is invalid. (2147942413, 8007000d) 오류 발생 - 두 번째 이야기 [1]
12084정성태12/19/201919232디버깅 기술: 143. windbg/sos - Hashtable의 buckets 배열 내용을 모두 덤프하는 방법 (do_hashtable.py) [1]
12083정성태12/17/201922210Linux: 27. linux - lldb를 이용한 .NET Core 응용 프로그램의 메모리 덤프 분석 방법 [2]
12082정성태12/17/201920513오류 유형: 585. lsof: WARNING: can't stat() fuse.gvfsd-fuse file system
12081정성태12/16/201922359개발 환경 구성: 465. 로컬 PC에서 개발 중인 ASP.NET Core 웹 응용 프로그램을 다른 PC에서도 접근하는 방법 [5]
... 61  62  63  64  65  66  67  68  69  70  71  72  [73]  74  75  ...