Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (seongtaejeong at gmail.com)
홈페이지
첨부 파일
 
(연관된 글이 2개 있습니다.)

파이썬 - WSL/docker에 구성한 Triton 예제 개발 환경

"Triton Inference Server"는,

// https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver

What Is The Triton Inference Server?

Triton Inference Server provides a cloud and edge inferencing solution optimized for both CPUs and GPUs. Triton supports an HTTP/REST and GRPC protocol that allows remote clients to request inferencing for any model being managed by the server. For edge deployments, Triton is available as a shared library with a C API that allows the full functionality of Triton to be included directly in an application.


NVIDIA 측에서 오픈 소스로 공개한 추론 서버로, 기학습된 딥러닝 모델을 쉽고 빠르게 활용할 수 있도록 해줍니다. 사실, 서버 자체는 C/C++로 작성돼 사용이 불편할 거라고 오해할 수 있는데, 다행히 지원하는 백엔드 중의 하나로 파이썬을 제공하므로 적용 난이도가 현저하게 낮아집니다.

대충, 그럼 환경 구성을 해볼까요? ^^

개발 환경을 어지럽히지 않기 위해 이런 경우 docker를 사용하면 좋은데요, (물론 원한다면 소스 코드를 빌드해도 됩니다.) 관련해서 다양한 이미지가 제공되고 있지만,

  • The xx.yy-py3 image contains the Triton Inference Server with support for PyTorch, TensorRT, ONNX and OpenVINO models.
  • The xx.yy-py3-sdk image contains Python and C++ client libraries, client examples, GenAI-Perf, Performance Analyzer and the Model Analyzer.
  • The xx.yy-py3-min image is used as the base for creating custom Triton server containers as described in Customize Triton Container.
  • The xx.yy-pyt-python-py3 image contains the Triton Inference Server with support for PyTorch and Python backends only.
  • The xx.yy-py3-igpu image contains the Triton Inference Server with support for Jetson Orin devices. Please refer to the Frameworks Support Matrix for information regarding which iGPU hardware/software is supported by which container.
  • The xx.yy-py3-igpu-sdk image contains Python and C++ client libraries, client examples, and the Perf Analyzer.
  • The xx.yy-py3-igpu-min image is used as the base for creating custom iGPU Triton server containers.
  • The xx.yy-vllm-python-py3 image contains the Triton Inference Server with support for vLLM and Python backends only.
  • The xx.yy-trtllm-python-py3 image contains the Triton Inference Server with support for TensorRT-LLM and Python backends only.

이번 글에서는 그냥 단순 실습 정도만 할 것이기 때문에 "xx.yy-py3" 이미지를 쓰겠습니다. 그렇다면 이제 버전을 선택해야 하는데요, 제 시스템의 경우 Driver Version과 CUDA Version이 각각 576.02., 12.9로 나오기 때문에,

$ /usr/lib/wsl/lib/nvidia-smi
Tue May 17 11:00:59 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 575.51.02              Driver Version: 576.02         CUDA Version: 12.9     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 4060 Ti     On  |   00000000:01:00.0  On |                  N/A |
|  0%   34C    P8              9W /  160W |    3643MiB /   8188MiB |     13%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI              PID   Type   Process name                        GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|  No running processes found                                                             |
+-----------------------------------------------------------------------------------------+

Triton Inference Server 문서에 따라,

Frameworks Support Matrix
; https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html

25.xx container images에 "Release 25.04 is based on CUDA 12.9.0.036 which requires NVIDIA Driver release 575 or later"라고 쓰여있기 때문에 그 버전의 이미지를 사용하겠습니다.

$ mkdir tis
$ cd tis

$ cat dockerfile

FROM nvcr.io/nvidia/tritonserver:25.04-py3

# 이건 필요 없지만 예제에서 사용한 model의 코드가 opencv 패키지를 사용하므로 포함
RUN apt-get update && apt-get install libgl1 -y

SHELL ["/bin/bash", "-c"]
WORKDIR /home/ubuntu

$ docker build -t tis .

(압축 파일 크기만 8GB가 넘고, 설치된 이미지 크기는 30GB가 넘어 시간이 제법 걸립니다.)

띄우기만 하면 뭔가 심심하니, 실제 동작하는 것까지 보고 싶은데요, 이 분야에 처음이라 제가 아는 바가 없어 ^^ 누군가가 작성한 예제를 활용해 보겠습니다.

Triton Inference Server 사용법
; https://velog.io/@dj_/Triton-Inference-Server-사용법

$ git clone https://github.com/fegler/triton_server_example.git
$ cd triton_server_example

우선, git clone을 했으면 save_model.py를 실행해야 하는데요, 이게 torchvision 패키지를 필요로 합니다. 하지만 triton에 올라갈 패키지에는 그것까지 포함할 필요는 없으므로 save_model.py는 별도의 환경에서 빌드하는 것이 좋겠습니다.

// 이번 글에서 사용하는 torchvision 0.20 패키지가 파이썬 3.9 ~ 3.12를 지원

$ conda create --name pybuild python=3.12 -y
$ conda activate pybuild
$ python -m pip install torchvision==0.20

$ python save_model.py

// 이하 작업은 확인 차원이므로 필요 없음
$ conda install opencv
$ python test_model.py
test finish

$ conda deactivate

저렇게 Model까지만 구성해도 triton 서버에서 돌아갈 수는 있는데요, 단지 예제 코드의 경우 파이썬 백엔드에서 pre/post processing 중에 부가적으로 로드하는 패키지들이 있어 좀 더 수고를 해야 합니다. 이에 대한 처리를 쉽게는, 그냥 해당 dockerfile 이미지에 패키지를 설치해 포함하는 것도 가능할 것 같은데요, 여기서는 conda로 패키징을 구성해 넣어 보겠습니다. 왜냐하면, ./triton/preprocessing과 ./triton/postprocessing 디렉터리 아래에 있는 config.pbtxt 파일에 파이썬의 실행 환경을 다음과 같이 명시하고 있기 때문입니다.

name: "preprocessing" 
backend: "python" 

input [
    {
        name: "image"
        data_type: TYPE_STRING 
        dims: [-1]
    }
]

output [
    {
        name: "input_image" 
        data_type: TYPE_FP32 
        dims: [-1, 3, -1, -1]
    }
]

parameters: {
    key: "EXECUTION_ENV_PATH", 
    value: {string_value: "$$TRITON_MODEL_DIRECTORY/pre_env.tar.gz"}
}

instance_group [
    {
        kind: KIND_CPU
    }
]

따라서, pre_env.tar.gz과 (./triton/postprocessing/config.pbtxt에 명시된) post_env.tar.gz 파일을 다음과 같이 각각 생성해 넣어야 합니다.

// Creating Custom Execution Environments
// ; https://github.com/triton-inference-server/python_backend?tab=readme-ov-file#creating-custom-execution-environments

$ export PYTHONNOUSERSITE=True

$ conda create --name triton_sample python=3.12 -y
$ conda activate triton_sample

// triton 25 버전인 경우 libstdcxx-ng=14로 구성
$ conda install -c conda-forge libstdcxx-ng=14 -y

$ conda install pip -y
$ conda install conda-pack -y
$ which conda-pack
/home/testusr/miniconda3/envs/triton_sample/bin/conda-pack

$ pip install -r pre_requirements.txt
$ conda-pack -n triton_sample -o pre_env.tar.gz
$ cp pre_env.tar.gz ./triton/preprocessing/pre_env.tar.gz

$ pip install -r post_requirements.txt
$ conda-pack -n triton_sample -o post_env.tar.gz
$ cp post_env.tar.gz ./triton/postprocessing/post_env.tar.gz

그럼, 최종적으로 이런 식의 Model 구성을 갖게 됩니다.

$ tree ./triton/
./triton/
├── core
│   ├── 1
│   │   └── model.pt
│   └── config.pbtxt
├── ensemble
│   ├── 1
│   │   └── placeholder
│   └── config.pbtxt
├── postprocessing
│   ├── 1
│   │   └── model.py
│   ├── config.pbtxt
│   └── post_env.tar.gz
└── preprocessing
    ├── 1
    │   └── model.py
    ├── config.pbtxt
    └── pre_env.tar.gz

$ ls ./triton/core/1/model.pt -l
-rw-r--r-- 1 kevin kevin 102594763 May 23 11:26 ./triton/core/1/model.pt

마지막으로 docker run 명령어로 triton 서버를 구동하면 끝!

$ export MODEL_FOLDER_PATH=/home/kevin/test/triton_server_example/triton

// gpu device=0 환경 설정
// SSL_CERT_DIR 설정

$ docker run --gpus='"device=0"' -it --rm --shm-size=8g -p 8005:8000 -e SSL_CERT_DIR=/etc/ssl/certs/ -v ${MODEL_FOLDER_PATH}:/model_dir tis tritonserver --model-repository=/model_dir --strict-model-config=false --model-control-mode=poll --repository-poll-secs=10 --backend-config=tensorflow,version=2 --log-verbose=1




고맙게도 triton_server_example repo는 테스트까지 할 수 있는 client.py를 제공하는데요, 적절하게 IP와 이미지 파일 경로만 맞춰준 다음,

$ cat client.py
import base64
import os
import requests
import json
import cv2
import numpy as np

from pytictoc import TicToc

# TicToc 클래스 생성
t = TicToc()

IP = "127.0.0.1"  ## use your ip

def inference(image_data, url="localhost", port="8005"):
    url = f"http://{url}:{port}/v2/models/ensemble/infer"
    data = {
        "inputs": [
            {
                "name": "image",
                "shape": [len(image_data)],
                "datatype": "BYTES",
                "data": image_data,
            }
        ]
    }
    headers = {"content-type": "application/json"}

    t.tic()
    response = requests.post(
        url, headers=headers, data=json.dumps(data, ensure_ascii=False)
    )
    tm = t.tocvalue()
    return response.text, tm


def read_image_data(im_paths):
    encode_ims = []
    for p in im_paths:
        if not os.path.exists(p):
            continue
        image = open(p, "rb")
        im_encode = base64.b64encode(image.read()).decode("ascii")
        encode_ims.append(im_encode)
    return encode_ims


if __name__ == "__main__":
    im_path = ["/home/testusr/test/triton_server_example/test_image.jpg"]
    images = read_image_data(im_path)
    response, tm = inference(images, IP)
    print("Inference Time: %f" % tm)
    response_json = json.loads(response)
    response_data = json.loads(response_json["outputs"][0]["data"][0])
    pred_probs = response_data["result"]
    print(pred_probs)

필요한 패키지 설치 후 triton 서버에 요청/응답까지 할 수 있습니다.

$ conda create --name triton_client -y
$ conda activate triton_client
$ conda install pip -y
 
$ pip install opencv-python
$ pip install requests
$ pip install pytictoc
$ python client.py
Inference Time: 3.681000
[[0.0007483039516955614, ...[생략]... 0.0009087992366403341]]

뭔지 모르지만... ^^; 아무튼, 잘 동작하는 것 같습니다.




참고로, 패키징된 tar.gz 파일의 경우 trtion 서버에 구동할 때 다시 unpack 작업을 거쳐야 하는데요, 이 과정을 생략할 수 있도록 미리 압축을 해제하는 것도 가능합니다.

예를 들어 위의 예제를 다시 (이번에는 pre/post를 위한 가상 환경을 각각 나눠서) 작성해 보면,

$ export PYTHONNOUSERSITE=True

$ conda create --name triton_sample_pre python=3.12 -y
$ conda activate triton_sample_pre

// triton 25 버전인 경우 libstdcxx-ng=14로 구성
$ conda install -c conda-forge libstdcxx-ng=14 -y

$ conda install pip -y
$ conda install conda-pack -y

$ pip install -r pre_requirements.txt
$ conda-pack -n triton_sample_pre -o pre_env.tar.gz

$ conda deactivate

$ conda create --name triton_sample_post python=3.12 -y
$ conda activate triton_sample_post

// triton 25 버전인 경우 libstdcxx-ng=14로 구성
$ conda install -c conda-forge libstdcxx-ng=14 -y

$ conda install pip -y
$ conda install conda-pack -y

$ pip install -r post_requirements.txt
$ conda-pack -n triton_sample_post -o post_env.tar.gz

$ conda deactivate

각각 pre_env.tar.gz, post_env.tar.gz 파일만 생성해 둔 다음 그대로 Model 디렉터리에 압축을 풀어 놓으면 됩니다.

$ mkdir -p ./triton/preprocessing/python_env
$ tar -xzf pre_env.tar.gz -C ./triton/preprocessing/python_env

$ mkdir -p ./triton/postprocessing/python_env
$ tar -xzf post_env.tar.gz -C ./triton/postprocessing/python_env

그럼 최종적으로 예제 디렉터리는 이런 식으로 구성되고,

./triton
├── core
│   ├── 1
│   │   └── model.pt
│   └── config.pbtxt
├── ensemble
│   ├── 1
│   │   └── placeholder
│   └── config.pbtxt
├── postprocessing
│   ├── 1
│   │   └── model.py
│   ├── config.pbtxt
│   └── python_env
|       ...[생략]...
├── postprocessing
│   ├── 1
│   │   └── model.py
│   ├── config.pbtxt
│   └── python_env
        ...[생략]...

그다음, 각각의 preprocessing, postprocessing 디렉터리에 있는 config.pbtxt 파일의 EXECUTION_ENV_PATH를 다음과 같이 수정합니다.

parameters: {
    key: "EXECUTION_ENV_PATH", 
    value: {string_value: "$$TRITON_MODEL_DIRECTORY/python_env"}
}

끝입니다, 이제 triton 서버를 실행하면 정상적으로, 이전보다 더 빠르게 구동됩니다. ^^




혹시나 이 분야에 연관이 있으신 분들이라면 아래의 글도 마저 읽어보시는 것이 좋을 듯합니다. ^^

Triton Inference Server #1. Triton Inference Server란?
; https://dytis.tistory.com/65

Triton Inference Server #2. 모델 스케쥴링
; https://dytis.tistory.com/66

Triton Inference Server #3. Model Management & Repository
; https://dytis.tistory.com/69

Triton Inference Server #4. Model Configuration
; https://dytis.tistory.com/70

Triton Inference Server #5. Python Backend
; https://dytis.tistory.com/71




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/30/2025]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 121  122  123  124  125  126  127  128  129  130  131  132  [133]  134  135  ...
NoWriterDateCnt.TitleFile(s)
1753정성태9/22/201421367오류 유형: 240. Lync로 세미나 참여 시 소리만 들리지 않는 경우 [1]
1752정성태9/21/201441609Windows: 100. 윈도우 8 - RDP 연결을 이용해 VNC처럼 사용자 로그온 화면을 공유하는 방법 [5]
1751정성태9/20/201439684.NET Framework: 464. 프로세스 간 통신 시 소켓 필요 없이 간단하게 Pipe를 열어 통신하는 방법 [1]파일 다운로드1
1750정성태9/20/201424683.NET Framework: 463. PInvoke 호출을 이용한 비동기 파일 작업파일 다운로드1
1749정성태9/20/201424561.NET Framework: 462. 커널 객체를 위한 null DACL 생성 방법파일 다운로드1
1748정성태9/19/201426113개발 환경 구성: 238. [Synergy] 여러 컴퓨터에서 키보드, 마우스 공유
1747정성태9/19/201429395오류 유형: 239. psexec 실행 오류 - The system cannot find the file specified.
1746정성태9/18/201426545.NET Framework: 461. .NET EXE 파일을 닷넷 프레임워크 버전에 상관없이 실행할 수 있을까요? - 두 번째 이야기 [6]파일 다운로드1
1745정성태9/17/201423891개발 환경 구성: 237. 리눅스 Integration Services 버전 업그레이드 하는 방법 [1]
1744정성태9/17/201431862.NET Framework: 460. GetTickCount / GetTickCount64와 0x7FFE0000 주솟값 [4]파일 다운로드1
1743정성태9/16/201421667오류 유형: 238. 설치 오류 - Failed to get size of pseudo bundle
1742정성태8/27/201427966개발 환경 구성: 236. Hyper-V에 설치한 리눅스 VM의 VHD 크기 늘리는 방법 [2]
1741정성태8/26/201422081.NET Framework: 459. GetModuleHandleEx로 알아보는 .NET 메서드의 DLL 모듈 관계파일 다운로드1
1740정성태8/25/201433490.NET Framework: 458. 닷넷 GC가 순환 참조를 해제할 수 있을까요? [2]파일 다운로드1
1739정성태8/24/201427401.NET Framework: 457. 교착상태(Dead-lock) 해결 방법 - Lock Leveling [2]파일 다운로드1
1738정성태8/23/201423020.NET Framework: 456. C# - CAS를 이용한 Lock 래퍼 클래스파일 다운로드1
1737정성태8/20/201420503VS.NET IDE: 93. Visual Studio 2013 동기화 문제
1736정성태8/19/201426474VC++: 79. [부연] CAS Lock 알고리즘은 과연 빠른가? [2]파일 다운로드1
1735정성태8/19/201419106.NET Framework: 455. 닷넷 사용자 정의 예외 클래스의 최소 구현 코드 - 두 번째 이야기
1734정성태8/13/201420813오류 유형: 237. Windows Media Player cannot access the file. The file might be in use, you might not have access to the computer where the file is stored, or your proxy settings might not be correct.
1733정성태8/13/201427132.NET Framework: 454. EmptyWorkingSet Win32 API를 사용하는 C# 예제파일 다운로드1
1732정성태8/13/201435410Windows: 99. INetCache 폴더가 다르게 보이는 이유
1731정성태8/11/201427903개발 환경 구성: 235. 점(.)으로 시작하는 파일명을 탐색기에서 만드는 방법
1730정성태8/11/201423017개발 환경 구성: 234. Royal TS의 터미널(Terminal) 연결에서 한글이 깨지는 현상 해결 방법
1729정성태8/11/201419034오류 유형: 236. SqlConnection - The requested Performance Counter is not a custom counter, it has to be initialized as ReadOnly.
1728정성태8/8/201431288.NET Framework: 453. C# - 오피스 파워포인트(Powerpoint) 파일을 WinForm에서 보는 방법파일 다운로드1
... 121  122  123  124  125  126  127  128  129  130  131  132  [133]  134  135  ...