Microsoft MVP성태의 닷넷 이야기
개발 환경 구성: 751. Triton Inference Server의 Python Backend 프로세스 [링크 복사], [링크+제목 복사],
조회: 4964
글쓴 사람
정성태 (seongtaejeong at gmail.com)
홈페이지
첨부 파일
 

(시리즈 글이 2개 있습니다.)
개발 환경 구성: 747. 파이썬 - WSL/docker에 구성한 Triton 예제 개발 환경
; https://www.sysnet.pe.kr/2/0/13938

개발 환경 구성: 751. Triton Inference Server의 Python Backend 프로세스
; https://www.sysnet.pe.kr/2/0/13956




Triton Inference Server의 Python Backend 프로세스

지난 글을 통해 Triton Inference Server에서 Python Backend 실습을 해봤는데요,

파이썬 - WSL/docker에 구성한 Triton 예제 개발 환경
; https://www.sysnet.pe.kr/2/0/13938

참고 삼아, 해당 docker 컨테이너가 실행될 때의 로그 전문을 아래에 실어봅니다. ^^

$ docker run --gpus='"device=0"' -it --rm --shm-size=8g -e SSL_CERT_DIR=/etc/ssl/certs/ -p 8005:8000  -v ${MODEL_FOLDER_PATH}:/model_dir tis tritonserver --model-repository=/model_dir --strict-model-config=false --model-control-mode=poll --repository-poll-secs=10 --backend-config=tensorflow,version=2 --log-verbose=1

=============================
== Triton Inference Server ==
=============================

NVIDIA Release 25.04 (build 164182428)
Triton Server Version 2.57.0

Copyright (c) 2018-2025, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.

Various files include modifications (c) NVIDIA CORPORATION & AFFILIATES.  All rights reserved.

GOVERNING TERMS: The software and materials are governed by the NVIDIA Software License Agreement
(found at https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-software-license-agreement/)
and the Product-Specific Terms for NVIDIA AI Products
(found at https://www.nvidia.com/en-us/agreements/enterprise-software/product-specific-terms-for-ai-products/).

Warning: '--strict-model-config' has been deprecated! Please use '--disable-auto-complete-config' instead.
I0528 07:03:33.259775 1 cache_manager.cc:480] "Create CacheManager with cache_dir: '/opt/tritonserver/caches'"
I0528 07:03:33.752273 1 pinned_memory_manager.cc:277] "Pinned memory pool is created at '0x204c00000' with size 268435456"
I0528 07:03:33.752790 1 cuda_memory_manager.cc:107] "CUDA memory pool is created on device 0 with size 67108864"
I0528 07:03:33.772394 1 model_config_utils.cc:753] "Server side auto-completed config: "
name: "core"
platform: "pytorch_libtorch"
input {
  name: "INPUT__0"
  data_type: TYPE_FP32
  dims: -1
  dims: 3
  dims: 224
  dims: 224
}
output {
  name: "OUTPUT__0"
  data_type: TYPE_FP32
  dims: -1
  dims: -1
}
default_model_filename: "model.pt"
backend: "pytorch"

I0528 07:03:33.773317 1 model_config_utils.cc:753] "Server side auto-completed config: "
name: "ensemble"
platform: "ensemble"
input {
  name: "image"
  data_type: TYPE_STRING
  dims: -1
}
output {
  name: "result"
  data_type: TYPE_STRING
  dims: -1
}
ensemble_scheduling {
  step {
    model_name: "preprocessing"
    model_version: -1
    input_map {
      key: "image"
      value: "image"
    }
    output_map {
      key: "input_image"
      value: "input_image"
    }
  }
  step {
    model_name: "core"
    model_version: -1
    input_map {
      key: "INPUT__0"
      value: "input_image"
    }
    output_map {
      key: "OUTPUT__0"
      value: "scores"
    }
  }
  step {
    model_name: "postprocessing"
    model_version: -1
    input_map {
      key: "INPUT__0"
      value: "scores"
    }
    output_map {
      key: "result"
      value: "result"
    }
  }
}

I0528 07:03:34.100777 1 model_config_utils.cc:753] "Server side auto-completed config: "
name: "postprocessing"
input {
  name: "INPUT__0"
  data_type: TYPE_FP32
  dims: -1
  dims: -1
}
output {
  name: "result"
  data_type: TYPE_STRING
  dims: -1
}
instance_group {
  kind: KIND_CPU
}
default_model_filename: "model.py"
parameters {
  key: "EXECUTION_ENV_PATH"
  value {
    string_value: "$$TRITON_MODEL_DIRECTORY/python_env"
  }
}
backend: "python"

I0528 07:03:34.231888 1 model_config_utils.cc:753] "Server side auto-completed config: "
name: "preprocessing"
input {
  name: "image"
  data_type: TYPE_STRING
  dims: -1
}
output {
  name: "input_image"
  data_type: TYPE_FP32
  dims: -1
  dims: 3
  dims: -1
  dims: -1
}
instance_group {
  kind: KIND_CPU
}
default_model_filename: "model.py"
parameters {
  key: "EXECUTION_ENV_PATH"
  value {
    string_value: "$$TRITON_MODEL_DIRECTORY/python_env"
  }
}
backend: "python"

W0528 07:03:34.232145 1 model_lifecycle.cc:112] "ignore version directory 'python_env' which fails to convert to integral number"
I0528 07:03:34.232199 1 model_lifecycle.cc:473] "loading: preprocessing:1"
W0528 07:03:34.232274 1 model_lifecycle.cc:112] "ignore version directory 'python_env' which fails to convert to integral number"
I0528 07:03:34.232312 1 model_lifecycle.cc:473] "loading: postprocessing:1"
I0528 07:03:34.232370 1 model_lifecycle.cc:473] "loading: core:1"
I0528 07:03:34.232429 1 backend_model.cc:505] "Adding default backend config setting: default-max-batch-size,4"
I0528 07:03:34.232527 1 shared_library.cc:149] "OpenLibraryHandle: /opt/tritonserver/backends/python/libtriton_python.so"
I0528 07:03:34.232590 1 backend_model.cc:505] "Adding default backend config setting: default-max-batch-size,4"
I0528 07:03:34.232456 1 backend_model.cc:505] "Adding default backend config setting: default-max-batch-size,4"
I0528 07:03:34.248938 1 python_be.cc:1982] "'python' TRITONBACKEND API version: 1.19"
I0528 07:03:34.248995 1 python_be.cc:2004] "backend configuration:\n{\"cmdline\":{\"auto-complete-config\":\"true\",\"backend-directory\":\"/opt/tritonserver/backends\",\"min-compute-capability\":\"6.000000\",\"default-max-batch-size\":\"4\"}}"
I0528 07:03:34.249021 1 python_be.cc:2142] "Shared memory configuration is shm-default-byte-size=1048576,shm-growth-byte-size=1048576,stub-timeout-seconds=30"
I0528 07:03:34.306505 1 python_be.cc:2439] "TRITONBACKEND_GetBackendAttribute: setting attributes"
I0528 07:03:34.306644 1 python_be.cc:2243] "TRITONBACKEND_ModelInitialize: preprocessing (version 1)"
I0528 07:03:34.306655 1 shared_library.cc:149] "OpenLibraryHandle: /opt/tritonserver/backends/pytorch/libtriton_pytorch.so"
I0528 07:03:34.307190 1 model_config_utils.cc:1986] "ModelConfig 64-bit fields:"
I0528 07:03:34.307232 1 model_config_utils.cc:1988] "\tModelConfig::dynamic_batching::default_priority_level"
I0528 07:03:34.307263 1 model_config_utils.cc:1988] "\tModelConfig::dynamic_batching::default_queue_policy::default_timeout_microseconds"
I0528 07:03:34.307288 1 model_config_utils.cc:1988] "\tModelConfig::dynamic_batching::max_queue_delay_microseconds"
I0528 07:03:34.307296 1 model_config_utils.cc:1988] "\tModelConfig::dynamic_batching::priority_levels"
I0528 07:03:34.307301 1 model_config_utils.cc:1988] "\tModelConfig::dynamic_batching::priority_queue_policy::key"
I0528 07:03:34.307307 1 model_config_utils.cc:1988] "\tModelConfig::dynamic_batching::priority_queue_policy::value::default_timeout_microseconds"
I0528 07:03:34.307311 1 model_config_utils.cc:1988] "\tModelConfig::ensemble_scheduling::step::model_version"
I0528 07:03:34.307315 1 model_config_utils.cc:1988] "\tModelConfig::input::dims"
I0528 07:03:34.307338 1 model_config_utils.cc:1988] "\tModelConfig::input::reshape::shape"
I0528 07:03:34.307345 1 model_config_utils.cc:1988] "\tModelConfig::instance_group::secondary_devices::device_id"
I0528 07:03:34.307348 1 model_config_utils.cc:1988] "\tModelConfig::model_warmup::inputs::value::dims"
I0528 07:03:34.307352 1 model_config_utils.cc:1988] "\tModelConfig::optimization::cuda::graph_spec::graph_lower_bound::input::value::dim"
I0528 07:03:34.307356 1 model_config_utils.cc:1988] "\tModelConfig::optimization::cuda::graph_spec::input::value::dim"
I0528 07:03:34.307360 1 model_config_utils.cc:1988] "\tModelConfig::output::dims"
I0528 07:03:34.307364 1 model_config_utils.cc:1988] "\tModelConfig::output::reshape::shape"
I0528 07:03:34.307367 1 model_config_utils.cc:1988] "\tModelConfig::sequence_batching::direct::max_queue_delay_microseconds"
I0528 07:03:34.307371 1 model_config_utils.cc:1988] "\tModelConfig::sequence_batching::max_sequence_idle_microseconds"
I0528 07:03:34.307391 1 model_config_utils.cc:1988] "\tModelConfig::sequence_batching::oldest::max_queue_delay_microseconds"
I0528 07:03:34.307398 1 model_config_utils.cc:1988] "\tModelConfig::sequence_batching::state::dims"
I0528 07:03:34.307402 1 model_config_utils.cc:1988] "\tModelConfig::sequence_batching::state::initial_state::dims"
I0528 07:03:34.307406 1 model_config_utils.cc:1988] "\tModelConfig::version_policy::specific::versions"
I0528 07:03:34.307514 1 python_be.cc:1849] "Using Python execution env /model_dir/preprocessing/python_env"
I0528 07:03:34.307585 1 pb_env.cc:267] "Returning canonical path since EXECUTION_ENV_PATH does not contain compressed path. Path: /model_dir/preprocessing/python_env"
I0528 07:03:35.351471 1 stub_launcher.cc:385] "Starting Python backend stub: source /model_dir/preprocessing/python_env/bin/activate && exec env LD_LIBRARY_PATH=/model_dir/preprocessing/python_env/lib:$LD_LIBRARY_PATH /opt/tritonserver/backends/python/triton_python_backend_stub /model_dir/preprocessing/1/model.py triton_python_backend_shm_region_b0fc2220-a884-4074-b0e9-50111be4a834 1048576 1048576 1 /opt/tritonserver/backends/python 336 preprocessing DEFAULT"
I0528 07:03:35.864486 1 libtorch.cc:2501] "TRITONBACKEND_Initialize: pytorch"
I0528 07:03:35.864552 1 libtorch.cc:2511] "Triton TRITONBACKEND API version: 1.19"
I0528 07:03:35.864558 1 libtorch.cc:2517] "'pytorch' TRITONBACKEND API version: 1.19"
I0528 07:03:35.864664 1 libtorch.cc:2550] "TRITONBACKEND_ModelInitialize: core (version 1)"
I0528 07:03:35.864699 1 python_be.cc:2243] "TRITONBACKEND_ModelInitialize: postprocessing (version 1)"
W0528 07:03:35.865129 1 libtorch.cc:329] "skipping model configuration auto-complete for 'core': not supported for pytorch backend"
I0528 07:03:35.865141 1 python_be.cc:1849] "Using Python execution env /model_dir/postprocessing/python_env"
I0528 07:03:35.865284 1 pb_env.cc:267] "Returning canonical path since EXECUTION_ENV_PATH does not contain compressed path. Path: /model_dir/postprocessing/python_env"
I0528 07:03:35.865608 1 libtorch.cc:358] "Optimized execution is enabled for model instance 'core'"
I0528 07:03:35.865652 1 libtorch.cc:377] "Cache Cleaning is disabled for model instance 'core'"
I0528 07:03:35.865658 1 libtorch.cc:394] "Inference Mode is enabled for model instance 'core'"
I0528 07:03:35.865662 1 libtorch.cc:413] "cuDNN is enabled for model instance 'core'"
I0528 07:03:35.865791 1 libtorch.cc:2594] "TRITONBACKEND_ModelInstanceInitialize: core_0 (GPU device 0)"
I0528 07:03:35.865847 1 backend_model_instance.cc:106] "Creating instance core_0 on GPU 0 (8.9) using artifact 'model.pt'"
I0528 07:03:35.866008 1 stub_launcher.cc:385] "Starting Python backend stub: source /model_dir/postprocessing/python_env/bin/activate && exec env LD_LIBRARY_PATH=/model_dir/postprocessing/python_env/lib:$LD_LIBRARY_PATH /opt/tritonserver/backends/python/triton_python_backend_stub /model_dir/postprocessing/1/model.py triton_python_backend_shm_region_122ca998-6109-4181-9f22-1d3ebb50f917 1048576 1048576 1 /opt/tritonserver/backends/python 336 postprocessing DEFAULT"
I0528 07:03:36.633413 1 backend_model_instance.cc:786] "Starting backend thread for core_0 at nice 0 on device 0..."
I0528 07:03:36.633882 1 model_lifecycle.cc:849] "successfully loaded 'core'"
I0528 07:03:47.014772 1 python_be.cc:1938] "model configuration:\n{\n    \"name\": \"preprocessing\",\n    \"platform\": \"\",\n    \"backend\": \"python\",\n    \"runtime\": \"\",\n    \"version_policy\": {\n        \"latest\": {\n            \"num_versions\": 1\n        }\n    },\n    \"max_batch_size\": 0,\n    \"input\": [\n        {\n            \"name\": \"image\",\n            \"data_type\": \"TYPE_STRING\",\n            \"format\": \"FORMAT_NONE\",\n            \"dims\": [\n                -1\n            ],\n            \"is_shape_tensor\": false,\n            \"allow_ragged_batch\": false,\n            \"optional\": false,\n            \"is_non_linear_format_io\": false\n        }\n    ],\n    \"output\": [\n        {\n            \"name\": \"input_image\",\n            \"data_type\": \"TYPE_FP32\",\n            \"dims\": [\n                -1,\n                3,\n                -1,\n                -1\n            ],\n            \"label_filename\": \"\",\n            \"is_shape_tensor\": false,\n            \"is_non_linear_format_io\": false\n        }\n    ],\n    \"batch_input\": [],\n    \"batch_output\": [],\n    \"optimization\": {\n        \"priority\": \"PRIORITY_DEFAULT\",\n        \"input_pinned_memory\": {\n            \"enable\": true\n        },\n        \"output_pinned_memory\": {\n            \"enable\": true\n        },\n        \"gather_kernel_buffer_threshold\": 0,\n        \"eager_batching\": false\n    },\n    \"instance_group\": [\n        {\n            \"name\": \"preprocessing_0\",\n            \"kind\": \"KIND_CPU\",\n            \"count\": 1,\n            \"gpus\": [],\n            \"secondary_devices\": [],\n            \"profile\": [],\n            \"passive\": false,\n            \"host_policy\": \"\"\n        }\n    ],\n    \"default_model_filename\": \"model.py\",\n    \"cc_model_filenames\": {},\n    \"metric_tags\": {},\n    \"parameters\": {\n        \"EXECUTION_ENV_PATH\": {\n            \"string_value\": \"$$TRITON_MODEL_DIRECTORY/python_env\"\n        }\n    },\n    \"model_warmup\": []\n}"
I0528 07:03:47.015244 1 python_be.cc:2287] "TRITONBACKEND_ModelInstanceInitialize: preprocessing_0_0 (CPU device 0)"
I0528 07:03:47.015299 1 backend_model_instance.cc:69] "Creating instance preprocessing_0_0 on CPU using artifact 'model.py'"
I0528 07:03:47.015417 1 pb_env.cc:267] "Returning canonical path since EXECUTION_ENV_PATH does not contain compressed path. Path: /model_dir/preprocessing/python_env"
I0528 07:03:47.016422 1 stub_launcher.cc:385] "Starting Python backend stub: source /model_dir/preprocessing/python_env/bin/activate && exec env LD_LIBRARY_PATH=/model_dir/preprocessing/python_env/lib:$LD_LIBRARY_PATH /opt/tritonserver/backends/python/triton_python_backend_stub /model_dir/preprocessing/1/model.py triton_python_backend_shm_region_08bebad7-d851-498a-91fe-cba9e3e2e961 1048576 1048576 1 /opt/tritonserver/backends/python 336 preprocessing_0_0 DEFAULT"
I0528 07:03:47.899083 1 python_be.cc:2308] "TRITONBACKEND_ModelInstanceInitialize: instance initialization successful preprocessing_0_0 (device 0)"
I0528 07:03:47.899297 1 backend_model_instance.cc:786] "Starting backend thread for preprocessing_0_0 at nice 0 on device 0..."
I0528 07:03:47.899592 1 model_lifecycle.cc:849] "successfully loaded 'preprocessing'"
I0528 07:03:59.117453 1 python_be.cc:1938] "model configuration:\n{\n    \"name\": \"postprocessing\",\n    \"platform\": \"\",\n    \"backend\": \"python\",\n    \"runtime\": \"\",\n    \"version_policy\": {\n        \"latest\": {\n            \"num_versions\": 1\n        }\n    },\n    \"max_batch_size\": 0,\n    \"input\": [\n        {\n            \"name\": \"INPUT__0\",\n            \"data_type\": \"TYPE_FP32\",\n            \"format\": \"FORMAT_NONE\",\n            \"dims\": [\n                -1,\n                -1\n            ],\n            \"is_shape_tensor\": false,\n            \"allow_ragged_batch\": false,\n            \"optional\": false,\n            \"is_non_linear_format_io\": false\n        }\n    ],\n    \"output\": [\n        {\n            \"name\": \"result\",\n            \"data_type\": \"TYPE_STRING\",\n            \"dims\": [\n                -1\n            ],\n            \"label_filename\": \"\",\n            \"is_shape_tensor\": false,\n            \"is_non_linear_format_io\": false\n        }\n    ],\n    \"batch_input\": [],\n    \"batch_output\": [],\n    \"optimization\": {\n        \"priority\": \"PRIORITY_DEFAULT\",\n        \"input_pinned_memory\": {\n            \"enable\": true\n        },\n        \"output_pinned_memory\": {\n            \"enable\": true\n        },\n        \"gather_kernel_buffer_threshold\": 0,\n        \"eager_batching\": false\n    },\n    \"instance_group\": [\n        {\n            \"name\": \"postprocessing_0\",\n            \"kind\": \"KIND_CPU\",\n            \"count\": 1,\n            \"gpus\": [],\n            \"secondary_devices\": [],\n            \"profile\": [],\n            \"passive\": false,\n            \"host_policy\": \"\"\n        }\n    ],\n    \"default_model_filename\": \"model.py\",\n    \"cc_model_filenames\": {},\n    \"metric_tags\": {},\n    \"parameters\": {\n        \"EXECUTION_ENV_PATH\": {\n            \"string_value\": \"$$TRITON_MODEL_DIRECTORY/python_env\"\n        }\n    },\n    \"model_warmup\": []\n}"
I0528 07:03:59.117846 1 python_be.cc:2287] "TRITONBACKEND_ModelInstanceInitialize: postprocessing_0_0 (CPU device 0)"
I0528 07:03:59.117900 1 backend_model_instance.cc:69] "Creating instance postprocessing_0_0 on CPU using artifact 'model.py'"
I0528 07:03:59.117985 1 pb_env.cc:267] "Returning canonical path since EXECUTION_ENV_PATH does not contain compressed path. Path: /model_dir/postprocessing/python_env"
I0528 07:03:59.118847 1 stub_launcher.cc:385] "Starting Python backend stub: source /model_dir/postprocessing/python_env/bin/activate && exec env LD_LIBRARY_PATH=/model_dir/postprocessing/python_env/lib:$LD_LIBRARY_PATH /opt/tritonserver/backends/python/triton_python_backend_stub /model_dir/postprocessing/1/model.py triton_python_backend_shm_region_7ba64d7a-c7c5-45cc-9a07-cda9fd5b2f32 1048576 1048576 1 /opt/tritonserver/backends/python 336 postprocessing_0_0 DEFAULT"
I0528 07:04:00.889559 1 python_be.cc:2308] "TRITONBACKEND_ModelInstanceInitialize: instance initialization successful postprocessing_0_0 (device 0)"
I0528 07:04:00.889911 1 backend_model_instance.cc:786] "Starting backend thread for postprocessing_0_0 at nice 0 on device 0..."
I0528 07:04:00.890376 1 model_lifecycle.cc:849] "successfully loaded 'postprocessing'"
I0528 07:04:00.890652 1 model_lifecycle.cc:473] "loading: ensemble:1"
I0528 07:04:00.891034 1 ensemble_model.cc:57] "ensemble model for ensemble\n"
I0528 07:04:00.891085 1 model_lifecycle.cc:849] "successfully loaded 'ensemble'"
I0528 07:04:00.891207 1 server.cc:604]
+------------------+------+
| Repository Agent | Path |
+------------------+------+
+------------------+------+

I0528 07:04:00.891272 1 server.cc:631]
+---------+---------------------------------------------------------+---------------------------------------------------------------------------------------------------------+
| Backend | Path                                                    | Config                                                                                                  |
+---------+---------------------------------------------------------+---------------------------------------------------------------------------------------------------------+
| python  | /opt/tritonserver/backends/python/libtriton_python.so   | {"cmdline":{"auto-complete-config":"true","backend-directory":"/opt/tritonserver/backends","min-compute |
|         |                                                         | -capability":"6.000000","default-max-batch-size":"4"}}                                                  |
| pytorch | /opt/tritonserver/backends/pytorch/libtriton_pytorch.so | {"cmdline":{"auto-complete-config":"true","backend-directory":"/opt/tritonserver/backends","min-compute |
|         |                                                         | -capability":"6.000000","default-max-batch-size":"4"}}                                                  |
+---------+---------------------------------------------------------+---------------------------------------------------------------------------------------------------------+

I0528 07:04:00.891349 1 server.cc:674]
+----------------+---------+--------+
| Model          | Version | Status |
+----------------+---------+--------+
| core           | 1       | READY  |
| ensemble       | 1       | READY  |
| postprocessing | 1       | READY  |
| preprocessing  | 1       | READY  |
+----------------+---------+--------+

I0528 07:04:00.942613 1 metrics.cc:890] "Collecting metrics for GPU 0: NVIDIA GeForce RTX 4060 Ti"
I0528 07:04:00.947748 1 metrics.cc:783] "Collecting CPU metrics"
I0528 07:04:00.948038 1 tritonserver.cc:2598]
+----------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+
| Option                           | Value                                                                                                                                      |
+----------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+
| server_id                        | triton                                                                                                                                     |
| server_version                   | 2.57.0                                                                                                                                     |
| server_extensions                | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda |
|                                  | _shared_memory binary_tensor_data parameters statistics trace logging                                                                      |
| model_repository_path[0]         | /model_dir                                                                                                                                 |
| model_control_mode               | MODE_POLL                                                                                                                                  |
| strict_model_config              | 0                                                                                                                                          |
| model_config_name                |                                                                                                                                            |
| rate_limit                       | OFF                                                                                                                                        |
| pinned_memory_pool_byte_size     | 268435456                                                                                                                                  |
| cuda_memory_pool_byte_size{0}    | 67108864                                                                                                                                   |
| min_supported_compute_capability | 6.0                                                                                                                                        |
| strict_readiness                 | 1                                                                                                                                          |
| exit_timeout                     | 30                                                                                                                                         |
| cache_enabled                    | 0                                                                                                                                          |
+----------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+

I0528 07:04:00.949955 1 grpc_server.cc:2368]
+----------------------------------------------+---------+
| GRPC KeepAlive Option                        | Value   |
+----------------------------------------------+---------+
| keepalive_time_ms                            | 7200000 |
| keepalive_timeout_ms                         | 20000   |
| keepalive_permit_without_calls               | 0       |
| http2_max_pings_without_data                 | 2       |
| http2_min_recv_ping_interval_without_data_ms | 300000  |
| http2_max_ping_strikes                       | 2       |
+----------------------------------------------+---------+

I0528 07:04:00.955697 1 grpc_server.cc:100] "Ready for RPC 'Check', 0"
I0528 07:04:00.955758 1 grpc_server.cc:100] "Ready for RPC 'ServerLive', 0"
I0528 07:04:00.955794 1 grpc_server.cc:100] "Ready for RPC 'ServerReady', 0"
I0528 07:04:00.955824 1 grpc_server.cc:100] "Ready for RPC 'ModelReady', 0"
I0528 07:04:00.955851 1 grpc_server.cc:100] "Ready for RPC 'ServerMetadata', 0"
I0528 07:04:00.955908 1 grpc_server.cc:100] "Ready for RPC 'ModelMetadata', 0"
I0528 07:04:00.955919 1 grpc_server.cc:100] "Ready for RPC 'ModelConfig', 0"
I0528 07:04:00.955930 1 grpc_server.cc:100] "Ready for RPC 'SystemSharedMemoryStatus', 0"
I0528 07:04:00.955956 1 grpc_server.cc:100] "Ready for RPC 'SystemSharedMemoryRegister', 0"
I0528 07:04:00.955986 1 grpc_server.cc:100] "Ready for RPC 'SystemSharedMemoryUnregister', 0"
I0528 07:04:00.956020 1 grpc_server.cc:100] "Ready for RPC 'CudaSharedMemoryStatus', 0"
I0528 07:04:00.956050 1 grpc_server.cc:100] "Ready for RPC 'CudaSharedMemoryRegister', 0"
I0528 07:04:00.956058 1 grpc_server.cc:100] "Ready for RPC 'CudaSharedMemoryUnregister', 0"
I0528 07:04:00.956067 1 grpc_server.cc:100] "Ready for RPC 'RepositoryIndex', 0"
I0528 07:04:00.956106 1 grpc_server.cc:100] "Ready for RPC 'RepositoryModelLoad', 0"
I0528 07:04:00.956115 1 grpc_server.cc:100] "Ready for RPC 'RepositoryModelUnload', 0"
I0528 07:04:00.956123 1 grpc_server.cc:100] "Ready for RPC 'ModelStatistics', 0"
I0528 07:04:00.956151 1 grpc_server.cc:100] "Ready for RPC 'Trace', 0"
I0528 07:04:00.956181 1 grpc_server.cc:100] "Ready for RPC 'Logging', 0"
I0528 07:04:00.956268 1 grpc_server.cc:364] "Thread started for CommonHandler"
I0528 07:04:00.956579 1 infer_handler.cc:675] "New request handler for ModelInferHandler, 0"
I0528 07:04:00.956667 1 infer_handler.h:1538] "Thread started for ModelInferHandler"
I0528 07:04:00.958032 1 infer_handler.cc:675] "New request handler for ModelInferHandler, 0"
I0528 07:04:00.958119 1 infer_handler.h:1538] "Thread started for ModelInferHandler"
I0528 07:04:00.958353 1 stream_infer_handler.cc:128] "New request handler for ModelStreamInferHandler, 0"
I0528 07:04:00.958431 1 infer_handler.h:1538] "Thread started for ModelStreamInferHandler"
I0528 07:04:00.958473 1 grpc_server.cc:2560] "Started GRPCInferenceService at 0.0.0.0:8001"
I0528 07:04:00.958724 1 http_server.cc:4755] "Started HTTPService at 0.0.0.0:8000"
I0528 07:04:01.003700 1 http_server.cc:358] "Started Metrics Service at 0.0.0.0:8002"
I0528 07:04:01.009674 1 server.cc:376] "Polling model repository"
I0528 07:04:11.479535 1 server.cc:376] "Polling model repository"
I0528 07:04:21.249437 1 server.cc:376] "Polling model repository"
I0528 07:04:31.052945 1 http_server.cc:4641] "HTTP request: 2 /v2/models/ensemble/infer"
I0528 07:04:31.053746 1 infer_request.cc:132] "[request id: <id_unknown>] Setting state from INITIALIZED to INITIALIZED"
I0528 07:04:31.053784 1 infer_request.cc:905] "[request id: <id_unknown>] prepared: [0x0x7f18940034f0] request id: , model: ensemble, requested version: -1, actual version: 1, flags: 0x0, correlation id: 0, batch size: 0, priority: 0, timeout (us): 0\noriginal inputs:\n[0x0x7f1894054488] input: image, type: BYTES, original shape: [1], batch + shape: [1], shape: [1]\noverride inputs:\ninputs:\n[0x0x7f1894054488] input: image, type: BYTES, original shape: [1], batch + shape: [1], shape: [1]\noriginal requested outputs:\nrequested outputs:\nresult\n"
I0528 07:04:31.053799 1 infer_request.cc:132] "[request id: <id_unknown>] Setting state from INITIALIZED to PENDING"
I0528 07:04:31.053807 1 infer_request.cc:132] "[request id: <id_unknown>] Setting state from PENDING to EXECUTING"
I0528 07:04:31.053884 1 infer_request.cc:132] "[request id: <id_unknown>] Setting state from INITIALIZED to INITIALIZED"
I0528 07:04:31.053894 1 infer_request.cc:905] "[request id: <id_unknown>] prepared: [0x0x7f1894046070] request id: , model: preprocessing, requested version: -1, actual version: 1, flags: 0x0, correlation id: 0, batch size: 0, priority: 0, timeout (us): 0\noriginal inputs:\n[0x0x7f1894044958] input: image, type: BYTES, original shape: [1], batch + shape: [1], shape: [1]\noverride inputs:\ninputs:\n[0x0x7f1894044958] input: image, type: BYTES, original shape: [1], batch + shape: [1], shape: [1]\noriginal requested outputs:\ninput_image\nrequested outputs:\ninput_image\n"
I0528 07:04:31.053929 1 infer_request.cc:132] "[request id: <id_unknown>] Setting state from INITIALIZED to PENDING"
I0528 07:04:31.054021 1 infer_request.cc:132] "[request id: <id_unknown>] Setting state from PENDING to EXECUTING"
I0528 07:04:31.054086 1 python_be.cc:1348] "model preprocessing, instance preprocessing_0_0, executing 1 requests"
I0528 07:04:31.063281 1 infer_response.cc:193] "add response output: output: input_image, type: FP32, shape: [1,3,224,224]"
I0528 07:04:31.063357 1 pinned_memory_manager.cc:198] "pinned memory allocation: size 602112, addr 0x204c00090"
I0528 07:04:31.063392 1 ensemble_scheduler.cc:569] "Internal response allocation: input_image, size 602112, addr 0x204c00090, memory type 1, type id 0"
I0528 07:04:31.063516 1 ensemble_scheduler.cc:584] "Internal response release: size 602112, addr 0x204c00090"
I0528 07:04:31.063539 1 infer_request.cc:132] "[request id: <id_unknown>] Setting state from INITIALIZED to INITIALIZED"
I0528 07:04:31.063549 1 infer_request.cc:905] "[request id: <id_unknown>] prepared: [0x0x7f19a4005900] request id: , model: core, requested version: -1, actual version: 1, flags: 0x0, correlation id: 0, batch size: 0, priority: 0, timeout (us): 0\noriginal inputs:\n[0x0x7f19a4005c68] input: INPUT__0, type: FP32, original shape: [1,3,224,224], batch + shape: [1,3,224,224], shape: [1,3,224,224]\noverride inputs:\ninputs:\n[0x0x7f19a4005c68] input: INPUT__0, type: FP32, original shape: [1,3,224,224], batch + shape: [1,3,224,224], shape: [1,3,224,224]\noriginal requested outputs:\nOUTPUT__0\nrequested outputs:\nOUTPUT__0\n"
I0528 07:04:31.063598 1 infer_request.cc:132] "[request id: <id_unknown>] Setting state from INITIALIZED to PENDING"
I0528 07:04:31.063716 1 infer_request.cc:132] "[request id: <id_unknown>] Setting state from PENDING to EXECUTING"
I0528 07:04:31.063728 1 infer_request.cc:132] "[request id: <id_unknown>] Setting state from EXECUTING to RELEASED"
I0528 07:04:31.063792 1 libtorch.cc:2660] "model core, instance core_0, executing 1 requests"
I0528 07:04:31.063906 1 libtorch.cc:1268] "TRITONBACKEND_ModelExecute: Running core_0 with 1 requests"
I0528 07:04:31.063855 1 python_be.cc:2407] "TRITONBACKEND_ModelInstanceExecute: model instance name preprocessing_0_0 released 1 requests"
I0528 07:04:31.683754 1 infer_response.cc:193] "add response output: output: OUTPUT__0, type: FP32, shape: [1,1000]"
I0528 07:04:31.683835 1 ensemble_scheduler.cc:569] "Internal response allocation: OUTPUT__0, size 4000, addr 0x1307093000, memory type 2, type id 0"
I0528 07:04:31.685041 1 ensemble_scheduler.cc:584] "Internal response release: size 4000, addr 0x1307093000"
I0528 07:04:31.685100 1 infer_request.cc:132] "[request id: <id_unknown>] Setting state from INITIALIZED to INITIALIZED"
I0528 07:04:31.685130 1 infer_request.cc:905] "[request id: <id_unknown>] prepared: [0x0x7f1a4a913430] request id: , model: postprocessing, requested version: -1, actual version: 1, flags: 0x0, correlation id: 0, batch size: 0, priority: 0, timeout (us): 0\noriginal inputs:\n[0x0x7f1818e81ee8] input: INPUT__0, type: FP32, original shape: [1,1000], batch + shape: [1,1000], shape: [1,1000]\noverride inputs:\ninputs:\n[0x0x7f1818e81ee8] input: INPUT__0, type: FP32, original shape: [1,1000], batch + shape: [1,1000], shape: [1,1000]\noriginal requested outputs:\nresult\nrequested outputs:\nresult\n"
I0528 07:04:31.685170 1 infer_request.cc:132] "[request id: <id_unknown>] Setting state from INITIALIZED to PENDING"
I0528 07:04:31.685278 1 infer_request.cc:132] "[request id: <id_unknown>] Setting state from EXECUTING to RELEASED"
I0528 07:04:31.685289 1 infer_request.cc:132] "[request id: <id_unknown>] Setting state from PENDING to EXECUTING"
I0528 07:04:31.685414 1 python_be.cc:1348] "model postprocessing, instance postprocessing_0_0, executing 1 requests"
I0528 07:04:31.685317 1 pinned_memory_manager.cc:226] "pinned memory deallocation: addr 0x204c00090"
I0528 07:04:31.688686 1 infer_response.cc:193] "add response output: output: result, type: BYTES, shape: []"
I0528 07:04:31.688752 1 pinned_memory_manager.cc:198] "pinned memory allocation: size 22945, addr 0x204c00090"
I0528 07:04:31.688761 1 ensemble_scheduler.cc:569] "Internal response allocation: result, size 22945, addr 0x204c00090, memory type 1, type id 0"
I0528 07:04:31.688785 1 ensemble_scheduler.cc:584] "Internal response release: size 22945, addr 0x204c00090"
I0528 07:04:31.688817 1 infer_response.cc:167] "add response output: output: result, type: BYTES, shape: []"
I0528 07:04:31.688830 1 http_server.cc:1272] "HTTP: unable to provide 'result' in CPU_PINNED, will use CPU"
I0528 07:04:31.688847 1 http_server.cc:1292] "HTTP using buffer for: 'result', size: 22945, addr: 0x7f19140055f0"
I0528 07:04:31.688884 1 pinned_memory_manager.cc:226] "pinned memory deallocation: addr 0x204c00090"
I0528 07:04:31.689991 1 http_server.cc:1366] "HTTP release: size 22945, addr 0x7f19140055f0"
I0528 07:04:31.690115 1 infer_request.cc:132] "[request id: <id_unknown>] Setting state from EXECUTING to RELEASED"
I0528 07:04:31.690166 1 infer_request.cc:132] "[request id: <id_unknown>] Setting state from EXECUTING to RELEASED"
I0528 07:04:31.690203 1 python_be.cc:2407] "TRITONBACKEND_ModelInstanceExecute: model instance name postprocessing_0_0 released 1 requests"
I0528 07:04:31.862249 1 server.cc:376] "Polling model repository"
I0528 07:04:42.315312 1 server.cc:376] "Polling model repository"
I0528 07:04:52.114117 1 server.cc:376] "Polling model repository"
I0528 07:05:02.489851 1 server.cc:376] "Polling model repository"
...[생략: "Polling model repository" 반복]...

참고로 마지막의 "Polling model repository"는 10초마다 모델 리포지토리의 변경을 확인하는 옵션을,

--model-control-mode=poll --repository-poll-secs=10

triton 명령행에서 전달했기 때문입니다.




파이썬 백엔드를 사용하는 경우 triton 서버의 프로세스 구조를 보면,

# pstree -pT
tritonserver(1)-+-dpkg-preconfigu(567)
                |-triton_python_b(266)
                `-triton_python_b(372)

하위에 triton_python_backend_stub 프로세스가 2개 떠 있는 것을 확인할 수 있습니다. 이때의 명령행을 보면,

/opt/tritonserver/backends/python/triton_python_backend_stub
    /model_dir/preprocessing/1/model.py 
    triton_python_backend_shm_region_71c355c0-2037-4895-9fbb-38fb4af06a8f 
    1048576 
    1048576 
    1 
    /opt/tritonserver/backends/python 
    336 
    preprocessing_0_0 
    DEFAULT

/opt/tritonserver/backends/python/triton_python_backend_stub 
    /model_dir/postprocessing/1/model.py 
    triton_python_backend_shm_region_6ac9d2f4-3535-4a3d-a334-f93d993228e8 
    1048576 
    1048576 
    1 
    /opt/tritonserver/backends/python 
    336 
    postprocessing_0_0 
    DEFAULT

2개의 프로세스가 각각 preprocessing과 postprocessing을 담당합니다. 테스트를 위해 간단하게 예제 코드를 변경해 볼까요? ^^ 가령, /model_dir/preprocessing/1/model.py 내에 로그를 남기는 코드를 이런 식으로 추가할 수 있습니다.

import triton_python_backend_utils as pb_utils

# ...[생략]...

class TritonPythonModel: 
    # ...[생략]...

    """
    preprocessing main logic 
    """

    def execute(self, requests):

        logger = pb_utils.Logger
        logger.log_info("========================================= INFO MSG ====================")

        responses = [] 
        for request in requests:
            ## get request 
            raw_images = pb_utils.get_input_tensor_by_name(request, "image").as_numpy()

            ## make response
            input_image = gen_input_image(raw_images)
            input_image_tensor = pb_utils.Tensor(
                "input_image", input_image.astype(np.float32)
            )
            response = pb_utils.InferenceResponse(
                output_tensors=[input_image_tensor]
            )
            responses.append(response)
        return responses

위의 경우는 preprocessing의 model.py에 넣은 것이라 triton 서버 구동 후 (client.py를 통해) 요청을 보내면 이런 식의 로그가 남는데요,

I0530 01:26:17.118568 1 model.py:51] "========================================= INFO MSG ===================="

사실, logger의 INFO, WARN, ERROR 등을 따지지 않고 출력하고 싶다면 단순히 print 함수를 사용해도 됩니다.




문서를 보면,

Building Custom Python Backend Stub
; https://github.com/triton-inference-server/python_backend/tree/main?tab=readme-ov-file#building-custom-python-backend-stub

triton_python_backend_stub은 사실상 Triton C++ Core와의 통신을 쉽게 할 수 있도록 기존의 Python Interpreter를 감싼 래퍼(wrapper)인 듯합니다. 즉, 기본적으로 Python Interpreter의 모든 기능을 사용할 수 있다고 봐야 합니다.

그렇다면 혹시 sitecustomize.py를 자동 실행하는 PYTHONPATH 환경 변수도 적용이 가능할까요? 테스트 해보면 알겠죠? ^^ 이를 위해 sitecustomize.py를 다음과 같이 작성하고,

$ cat /home/testusr/test/triton_server_example/temp/sitecustomize.py

print("================= SITE CUSTOMIZE ====================")

컨테이너 실행 시 저 파일을 포함한 디렉터리를 볼륨으로 연결하고 이것을 다시 PYTHONPATH 환경 변수로 지정하면,

$ export MODEL_FOLDER_PATH=/home/testusr/test/triton_server_example/triton
$ export MY_PYTHONPATH=/home/testusr/test/triton_server_example/temp

docker run --gpus='"device=0"' -it --rm --shm-size=8g -p 8005:8000 -e PYTHONPATH=/my_temp -e SSL_CERT_DIR=/etc/ssl/certs/ -v ${MY_PYTHONPATH}:/my_temp -v ${MODEL_FOLDER_PATH}:/model_dir tis tritonserver --model-repository=/model_dir --strict-model-config=false --model-control-mode=poll --repository-poll-secs=10 --backend-config=tensorflow,version=2 --log-verbose=1=1


이후 실행 과정에서 triton 서버 초기화 시 다음과 같이 sitecustomize.py의 흔적을 4군데에서 확인할 수 있습니다.

...[생략]...
I0530 02:28:18.840890 1 python_be.cc:1849] "Using Python execution env /model_dir/postprocessing/python_env"
I0530 02:28:18.840923 1 python_be.cc:1849] "Using Python execution env /model_dir/preprocessing/python_env"
I0530 02:28:18.841027 1 pb_env.cc:267] "Returning canonical path since EXECUTION_ENV_PATH does not contain compressed path. Path: /model_dir/postprocessing/python_env"
I0530 02:28:18.841105 1 pb_env.cc:267] "Returning canonical path since EXECUTION_ENV_PATH does not contain compressed path. Path: /model_dir/preprocessing/python_env"
I0530 02:28:19.103146 1 stub_launcher.cc:385] "Starting Python backend stub: source /model_dir/postprocessing/python_env/bin/activate && exec env LD_LIBRARY_PATH=/model_dir/postprocessing/python_env/lib:$LD_LIBRARY_PATH /opt/tritonserver/backends/python/triton_python_backend_stub /model_dir/postprocessing/1/model.py triton_python_backend_shm_region_af0d939b-b62b-44bb-949f-e156d66e41c1 1048576 1048576 1 /opt/tritonserver/backends/python 336 postprocessing DEFAULT"
I0530 02:28:19.103171 1 stub_launcher.cc:385] "Starting Python backend stub: source /model_dir/preprocessing/python_env/bin/activate && exec env LD_LIBRARY_PATH=/model_dir/preprocessing/python_env/lib:$LD_LIBRARY_PATH /opt/tritonserver/backends/python/triton_python_backend_stub /model_dir/preprocessing/1/model.py triton_python_backend_shm_region_13e3cba7-80d3-4ca5-b268-26cf977cf03e 1048576 1048576 1 /opt/tritonserver/backends/python 336 preprocessing DEFAULT"
================= SITE CUSTOMIZE ====================
================= SITE CUSTOMIZE ====================
I0530 02:28:19.750559 1 libtorch.cc:2501] "TRITONBACKEND_Initialize: pytorch"
I0530 02:28:19.750657 1 libtorch.cc:2511] "Triton TRITONBACKEND API version: 1.19"
I0530 02:28:19.750697 1 libtorch.cc:2517] "'pytorch' TRITONBACKEND API version: 1.19"
I0530 02:28:19.750776 1 libtorch.cc:2550] "TRITONBACKEND_ModelInitialize: core (version 1)"
W0530 02:28:19.751482 1 libtorch.cc:329] "skipping model configuration auto-complete for 'core': not supported for pytorch backend"
I0530 02:28:19.752227 1 libtorch.cc:358] "Optimized execution is enabled for model instance 'core'"
I0530 02:28:19.752305 1 libtorch.cc:377] "Cache Cleaning is disabled for model instance 'core'"
I0530 02:28:19.752318 1 libtorch.cc:394] "Inference Mode is enabled for model instance 'core'"
I0530 02:28:19.752362 1 libtorch.cc:413] "cuDNN is enabled for model instance 'core'"
...[생략]...
I0530 02:28:21.955190 1 python_be.cc:2287] "TRITONBACKEND_ModelInstanceInitialize: preprocessing_0_0 (CPU device 0)"
I0530 02:28:21.955247 1 backend_model_instance.cc:69] "Creating instance preprocessing_0_0 on CPU using artifact 'model.py'"
I0530 02:28:21.955354 1 pb_env.cc:267] "Returning canonical path since EXECUTION_ENV_PATH does not contain compressed path. Path: /model_dir/preprocessing/python_env"
I0530 02:28:21.956001 1 stub_launcher.cc:385] "Starting Python backend stub: source /model_dir/preprocessing/python_env/bin/activate && exec env LD_LIBRARY_PATH=/model_dir/preprocessing/python_env/lib:$LD_LIBRARY_PATH /opt/tritonserver/backends/python/triton_python_backend_stub /model_dir/preprocessing/1/model.py triton_python_backend_shm_region_3b77605f-d9bd-40fc-aab8-cd277ca0734c 1048576 1048576 1 /opt/tritonserver/backends/python 336 preprocessing_0_0 DEFAULT"
================= SITE CUSTOMIZE ====================
I0530 02:28:22.955900 1 python_be.cc:2308] "TRITONBACKEND_ModelInstanceInitialize: instance initialization successful preprocessing_0_0 (device 0)"
I0530 02:28:22.956119 1 backend_model_instance.cc:786] "Starting backend thread for preprocessing_0_0 at nice 0 on device 0..."
I0530 02:28:22.956430 1 model_lifecycle.cc:849] "successfully loaded 'preprocessing'"
...[생략]...
I0530 02:28:23.122625 1 python_be.cc:2287] "TRITONBACKEND_ModelInstanceInitialize: postprocessing_0_0 (CPU device 0)"
I0530 02:28:23.122683 1 backend_model_instance.cc:69] "Creating instance postprocessing_0_0 on CPU using artifact 'model.py'"
I0530 02:28:23.122762 1 pb_env.cc:267] "Returning canonical path since EXECUTION_ENV_PATH does not contain compressed path. Path: /model_dir/postprocessing/python_env"
I0530 02:28:23.123564 1 stub_launcher.cc:385] "Starting Python backend stub: source /model_dir/postprocessing/python_env/bin/activate && exec env LD_LIBRARY_PATH=/model_dir/postprocessing/python_env/lib:$LD_LIBRARY_PATH /opt/tritonserver/backends/python/triton_python_backend_stub /model_dir/postprocessing/1/model.py triton_python_backend_shm_region_6ca36aca-7a8f-483d-b203-5438729ff9ca 1048576 1048576 1 /opt/tritonserver/backends/python 336 postprocessing_0_0 DEFAULT"
================= SITE CUSTOMIZE ====================
I0530 02:28:24.873003 1 python_be.cc:2308] "TRITONBACKEND_ModelInstanceInitialize: instance initialization successful postprocessing_0_0 (device 0)"
I0530 02:28:24.873311 1 backend_model_instance.cc:786] "Starting backend thread for postprocessing_0_0 at nice 0 on device 0..."
I0530 02:28:24.873713 1 model_lifecycle.cc:849] "successfully loaded 'postprocessing'"
I0530 02:28:24.874052 1 model_lifecycle.cc:473] "loading: ensemble:1"
I0530 02:28:24.874461 1 ensemble_model.cc:57] "ensemble model for ensemble\n"
I0530 02:28:24.874519 1 model_lifecycle.cc:849] "successfully loaded 'ensemble'"

예제의 경우 총 4개의 프로세스가 뜨는데,

source /model_dir/postprocessing/python_env/bin/activate && exec env LD_LIBRARY_PATH=/model_dir/postprocessing/python_env/lib:$LD_LIBRARY_PATH /opt/tritonserver/backends/python/triton_python_backend_stub /model_dir/postprocessing/1/model.py triton_python_backend_shm_region_af0d939b-b62b-44bb-949f-e156d66e41c1 1048576 1048576 1 /opt/tritonserver/backends/python 336 postprocessing DEFAULT

source /model_dir/preprocessing/python_env/bin/activate && exec env LD_LIBRARY_PATH=/model_dir/preprocessing/python_env/lib:$LD_LIBRARY_PATH /opt/tritonserver/backends/python/triton_python_backend_stub /model_dir/preprocessing/1/model.py triton_python_backend_shm_region_13e3cba7-80d3-4ca5-b268-26cf977cf03e 1048576 1048576 1 /opt/tritonserver/backends/python 336 preprocessing DEFAULT

source /model_dir/preprocessing/python_env/bin/activate && exec env LD_LIBRARY_PATH=/model_dir/preprocessing/python_env/lib:$LD_LIBRARY_PATH /opt/tritonserver/backends/python/triton_python_backend_stub /model_dir/preprocessing/1/model.py triton_python_backend_shm_region_3b77605f-d9bd-40fc-aab8-cd277ca0734c 1048576 1048576 1 /opt/tritonserver/backends/python 336 preprocessing_0_0 DEFAULT

source /model_dir/postprocessing/python_env/bin/activate && exec env LD_LIBRARY_PATH=/model_dir/postprocessing/python_env/lib:$LD_LIBRARY_PATH /opt/tritonserver/backends/python/triton_python_backend_stub /model_dir/postprocessing/1/model.py triton_python_backend_shm_region_6ca36aca-7a8f-483d-b203-5438729ff9ca 1048576 104초8576 1 /opt/tritonserver/backends/python 336 postprocessing_0_0 DEFAULT

처음 두 번의 pre/post는 종료되고 결국 남아 있는 것은 마지막의 pre/postprocessing_0_0 프로세스 2개입니다.

어쨌든, 이런 결과를 봤을 때 triton_python_backend_stub은 사실상 기존에 우리가 알던 python 실행 파일의 기능을 그대로 내장한다고 봐도 무방할 것입니다.




참고로, model repository로 지정된 디렉터리에는 그 하위에 임의의 목적으로 디렉터리를 만들 수 없습니다. 가령 './model_dir/temp'와 같은 디렉터리를 만들어 임시 파일을 넣어 시작하면, triton 서버 초기화 시 이런 오류와 함께 실패해 버립니다.

E0530 01:55:16.055891 1 model_repository_manager.cc:1460] "Poll failed for model directory 'temp': Invalid model name: Could not determine backend for model 'temp' with no backend in model configuration. Expected model name of the form 'model.<backend_name>'."


그러니까 Model Repository의 하위 디렉터리라면 config.pbtxt 등의 파일로 적절하게 모델 정의가 포함돼 있어야 하는 것입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 6/19/2025]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...
NoWriterDateCnt.TitleFile(s)
12153정성태2/23/202024454.NET Framework: 898. Trampoline을 이용한 후킹의 한계파일 다운로드1
12152정성태2/23/202021443.NET Framework: 897. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 세 번째 이야기(Trampoline 후킹)파일 다운로드1
12151정성태2/22/202024079.NET Framework: 896. C# - Win32 API를 Trampoline 기법을 이용해 C# 메서드로 가로채는 방법 - 두 번째 이야기 (원본 함수 호출)파일 다운로드1
12150정성태2/21/202024195.NET Framework: 895. C# - Win32 API를 Trampoline 기법을 이용해 C# 메서드로 가로채는 방법 [1]파일 다운로드1
12149정성태2/20/202021087.NET Framework: 894. eBEST C# XingAPI 래퍼 - 연속 조회 처리 방법 [1]
12148정성태2/19/202025780디버깅 기술: 163. x64 환경에서 구현하는 다양한 Trampoline 기법 [1]
12147정성태2/19/202021067디버깅 기술: 162. x86/x64의 기계어 코드 최대 길이
12146정성태2/18/202022268.NET Framework: 893. eBEST C# XingAPI 래퍼 - 로그인 처리파일 다운로드1
12145정성태2/18/202023874.NET Framework: 892. eBEST C# XingAPI 래퍼 - Sqlite 지원 추가파일 다운로드1
12144정성태2/13/202024067.NET Framework: 891. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 두 번째 이야기파일 다운로드1
12143정성태2/13/202018490.NET Framework: 890. 상황별 GetFunctionPointer 반환값 정리 - x64파일 다운로드1
12142정성태2/12/202022449.NET Framework: 889. C# 코드로 접근하는 MethodDesc, MethodTable파일 다운로드1
12141정성태2/10/202021417.NET Framework: 888. C# - ASP.NET Core 웹 응용 프로그램의 출력 가로채기 [2]파일 다운로드1
12140정성태2/10/202022745.NET Framework: 887. C# - ASP.NET 웹 응용 프로그램의 출력 가로채기파일 다운로드1
12139정성태2/9/202022437.NET Framework: 886. C# - Console 응용 프로그램에서 UI 스레드 구현 방법
12138정성태2/9/202028644.NET Framework: 885. C# - 닷넷 응용 프로그램에서 SQLite 사용 [6]파일 다운로드1
12137정성태2/9/202020309오류 유형: 592. [AhnLab] 경고 - 디버거 실행을 탐지했습니다.
12136정성태2/6/202021976Windows: 168. Windows + S(또는 Q)로 뜨는 작업 표시줄의 검색 바가 동작하지 않는 경우
12135정성태2/6/202027752개발 환경 구성: 468. Nuget 패키지의 로컬 보관 폴더를 옮기는 방법 [2]
12134정성태2/5/202024994.NET Framework: 884. eBEST XingAPI의 C# 래퍼 버전 - XingAPINet Nuget 패키지 [5]파일 다운로드1
12133정성태2/5/202022783디버깅 기술: 161. Windbg 환경에서 확인해 본 .NET 메서드 JIT 컴파일 전과 후 - 두 번째 이야기
12132정성태1/28/202025884.NET Framework: 883. C#으로 구현하는 Win32 API 후킹(예: Sleep 호출 가로채기) [1]파일 다운로드1
12131정성태1/27/202024516개발 환경 구성: 467. LocaleEmulator를 이용해 유니코드를 지원하지 않는(한글이 깨지는) 프로그램을 실행하는 방법 [1]
12130정성태1/26/202022081VS.NET IDE: 142. Visual Studio에서 windbg의 "Open Executable..."처럼 EXE를 직접 열어 디버깅을 시작하는 방법
12129정성태1/26/202029082.NET Framework: 882. C# - 키움 Open API+ 사용 시 Registry 등록 없이 KHOpenAPI.ocx 사용하는 방법 [3]
12128정성태1/26/202023216오류 유형: 591. The code execution cannot proceed because mfc100.dll was not found. Reinstalling the program may fix this problem.
... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...