C# / NAudio - (AI 학습을 위해) 무음 구간을 반영한 오디오 파일 분할
Whisper 모델의 경우,
C# - Whisper.NET Library를 이용해 음성을 텍스트로 변환 및 번역하는 예제
; https://www.sysnet.pe.kr/2/0/14013
로컬에서 실행하는 경우에는 문제가 없지만,
Azure OpenAI 서비스의 Whisper 모델을 이용하는 경우에는 25MB 파일 크기 제한이 있습니다. 그렇다면 일정 크기로 나눠야 할 텐데요, 하지만 음성 데이터의 특성상 단순히 파일 크기로 나누기보다는 무음 구간을 인지해 나누는 것이 음성 인식의 정확도를 높이는 데 도움이 됩니다.
자, 그래서 ^^ 이번에는 무음 구간을 반영한 오디오 청크 분할 방법에 대해 알아보겠습니다.
이를 위해 우선 적절한 동영상 파일이 있어야 하는데요, 마침 Youtube로부터 다운로드하는 것도 만들었으니,
C# - Youtube 동영상 다운로드 (YoutubeExplode 패키지)
; https://www.sysnet.pe.kr/2/0/14021
먼저 이것을 시간에 따라 청크로 나눠보겠습니다.
NAudio 라이브러리의 경우 특정 시간만을 잘라내는 기능을 이미 제공하고 있으므로,
Using OffsetSampleProvider
; https://github.com/naudio/NAudio/blob/master/Docs/OffsetSampleProvider.md
using var reader = new AudioFileReader("test.wav");
var offset = new OffsetSampleProvider(reader);
offset.SkipOver = TimeSpan.FromSeconds(10); // 5초 후,
offset.Take = TimeSpan.FromSeconds(20); // 20초 분량만큼.
// 이 구간만을 잘라내서 out.wav로 저장.
WaveFileWriter.CreateWaveFile16(@"out.wav", offset);
특정 오디오 파일을 (예를 들어) 2분마다 끊어서 파일에 저장하는 것을 다음과 같이 구현할 수 있습니다.
using var reader = new AudioFileReader(inputPath);
var chunkDuration = TimeSpan.FromMinutes(2);
var numOfChunks = (int)Math.Ceiling(reader.TotalTime.TotalSeconds / chunkDuration.TotalSeconds);
for (int i = 0; i < numOfChunks; i++)
{
reader.Position = 0;
var offset = new OffsetSampleProvider(reader);
offset.SkipOver = TimeSpan.FromSeconds(i * chunkDuration.TotalSeconds);
offset.Take = TimeSpan.FromSeconds(chunkDuration.TotalSeconds);
WaveFileWriter.CreateWaveFile16($"out_{i}min.wav", offset);
}
하지만 우리가 원하는 것은, 단순한 파일 크기만이 아니라 거기에 무음 구간을 반영하는 것입니다. 이를 위해서는 어쨌든 음성 데이터에 접근해야 하는데요, NAudio의 경우 샘플링된 데이터를 다음과 같은 방식으로 열거할 수 있습니다.
AudioFileReader source = new("...[오디오 파일 경로]...");
source.Position = 0;
float[] buffer = new float[1600];
long totalSamplesRead = 0;
int read;
while ((read = source.Read(buffer, 0, buffer.Length)) > 0)
{
for (int i = 0; i < read; i++)
{
float value = buffer[i]; // -1.0 ~ +1.0 사이의 값
}
totalSamplesRead += read;
}
엄밀히
WAV 데이터는 bitsPerSample의 값 범위를 갖는데, 예를 들어 16비트라면 (-32768도 표현은 되지만)
-32767 ~ +32767 사이의 값이 됩니다. 반면 NAudio가 열거한 값은 -1.0 ~ +1.0 사이의 정규화된 값이므로 이상적인 무음 값은 0.0이 연속으로 나와야 합니다.
하지만, 아날로그 성격상 오디오 데이터는 잡음이 섞일 수 있기 때문에, 가령 Abs(0.01) 이하의 진동만 있다면 무음이라는 식으로 판단해야 합니다. 그리고 한 가지 더 고려해야 할 것이, "무음의 연속"에 대한 판단입니다. 0.01 이하의 값은 샘플링된 순간에 따라 나오는 것도 가능하기 때문에 어느 정도 지속 구간을 함께 기준으로 추가해야 합니다.
이를 바탕으로 코딩을 하려고 했는데... 요즘이 어떤 세상입니까? ^^ AI가 코드 생성을 이렇게 해주는군요.
static List<TimeSpan> DetectSilencePoints(
AudioFileReader source,
double silenceThresholdDb = -35,
int minSilenceDurationMs = 300,
int analysisWindowMs = 50)
{
// Reset reader to start
source.Position = 0;
int sampleRate = source.WaveFormat.SampleRate;
int channels = source.WaveFormat.Channels;
int samplesPerWindow = Math.Max(1, sampleRate * analysisWindowMs / 1000) * channels;
float[] buffer = new float[samplesPerWindow];
var silenceRuns = new List<(TimeSpan start, TimeSpan end)>();
bool inSilence = false;
TimeSpan runStart = TimeSpan.Zero;
long totalSamplesRead = 0;
int read;
while ((read = source.Read(buffer, 0, buffer.Length)) > 0)
{
int frames = read / channels;
if (frames <= 0) continue;
// Peak of this window
float peak = 0f;
for (int i = 0; i < read; i++)
{
peak = Math.Max(peak, Math.Abs(buffer[i]));
}
// Convert to dBFS; clamp to avoid log(0)
double db = (peak <= 1e-9) ? -120.0 : 20.0 * Math.Log10(peak);
TimeSpan windowStart = SamplesToTime(totalSamplesRead, sampleRate, channels);
TimeSpan windowEnd = SamplesToTime(totalSamplesRead + read, sampleRate, channels);
bool isSilent = db <= silenceThresholdDb;
if (isSilent && !inSilence)
{
inSilence = true;
runStart = windowStart;
}
else if (!isSilent && inSilence)
{
inSilence = false;
var dur = windowStart - runStart;
if (dur.TotalMilliseconds >= minSilenceDurationMs)
silenceRuns.Add((runStart, windowStart));
}
totalSamplesRead += read;
}
// End boundary
if (inSilence)
{
var end = SamplesToTime(totalSamplesRead, sampleRate, channels);
var dur = end - runStart;
if (dur.TotalMilliseconds >= minSilenceDurationMs)
silenceRuns.Add((runStart, end));
}
// Use midpoints of runs as candidate "clean" cut points.
var points = silenceRuns.Select(run => run.start + TimeSpan.FromTicks((run.end - run.start).Ticks / 2)).ToList();
Console.WriteLine($"Detected {points.Count} silence candidates (≥ {minSilenceDurationMs} ms @ {silenceThresholdDb} dBFS).");
return points;
}
그러니까, 총 300ms 구간 동안 -35dBFS 이하의 값이 연속으로 나오면 그것을 무음으로 판단하고 있습니다. 개인적으로
"dBFS"라는 단위를 처음 봤는데요, 코드에서처럼 정규화된 PCM 값에 아래의 공식을 적용해 계산할 수 있다고 합니다.
dBFS = 20 * log10(정규화된 값)
그런 의미에서 봤을 때, -35dBFS는 대략 0.0177 정도의 진폭에 해당하기 때문에 저 계산을 그냥 빼고 진폭 값을 직접 비교해도 무방합니다.
static List<TimeSpan> DetectSilencePoints(
AudioFileReader source,
double silenceThreshold = 0.0177f,
int minSilenceDurationMs = 300,
int analysisWindowMs = 50)
{
// ...[생략]...
while ((read = source.Read(buffer, 0, buffer.Length)) > 0)
{
// ...[생략]...
// Peak of this window
float peak = 0f;
for (int i = 0; i < read; i++)
{
peak = Math.Max(peak, Math.Abs(buffer[i]));
}
// 0.1 ==> 약 -40dBFS
// 0.0177 ==> 약 -35.04dBFS
// 주석 처리
// double db = peak; // (peak <= 1e-9) ? -120.0 : 20.0 * Math.Log10(peak);
TimeSpan windowStart = SamplesToTime(totalSamplesRead, sampleRate, channels);
TimeSpan windowEnd = SamplesToTime(totalSamplesRead + read, sampleRate, channels);
bool isSilent = peak <= silenceThreshold;
// ...[생략]...
}
// ...[생략]...
return points;
}
자, 이제 마지막으로 무음 구간을 반영해 청크로 나눠 볼 텐데요, 가령 2분 단위로 끊되 앞/뒤로 무음 구간이 있다면 그걸 반영해 끊는 것입니다. 이것도 그냥 AI한테 만들어 달라고 하니 다음과 같이 ^^ 잘 만들어줍니다.
/// <summary>
/// Compute final cut points: start(0), snapped cuts near each target interval, end(total).
/// </summary>
static List<TimeSpan> ComputeCutPoints(
TimeSpan total,
TimeSpan targetInterval,
List<TimeSpan> silenceCandidates,
TimeSpan searchWindow,
TimeSpan minGapAfterCut)
{
var cuts = new List<TimeSpan> { TimeSpan.Zero };
// Generate target times: 2min, 4min, ... < total
var targets = new List<TimeSpan>();
for (var t = targetInterval; t < total; t += targetInterval)
targets.Add(t);
TimeSpan lastCut = TimeSpan.Zero;
foreach (var t in targets)
{
var min = t - searchWindow;
var max = t + searchWindow;
// Find nearest silence within window that keeps reasonable spacing
var candidate = silenceCandidates
.Where(s => s >= min && s <= max && (s - lastCut) >= minGapAfterCut)
.OrderBy(s => Math.Abs((s - t).Ticks))
.FirstOrDefault();
TimeSpan chosen;
if (candidate == default)
{
chosen = (t - lastCut) >= minGapAfterCut ? t : lastCut; // fallback to exact t if spacing ok
}
else
{
chosen = candidate;
}
if (chosen > lastCut && chosen < total)
{
cuts.Add(chosen);
lastCut = chosen;
}
}
if (cuts.Last() != total)
cuts.Add(total);
// Deduplicate / sort just in case
cuts = cuts.Distinct().OrderBy(ts => ts).ToList();
Console.WriteLine("Cut map:");
for (int i = 0; i < cuts.Count; i++)
Console.WriteLine($" [{i}] {cuts[i]}");
return cuts;
}
딱히 어려운 메서드는 아니므로 설명은 생략하겠습니다. ^^ 여기까지의 코드를 종합하면,
string inputPath = @"C:\media_sample\test.wav";
using var reader = new AudioFileReader(inputPath);
// 1) Detect silence points.
List<TimeSpan> silencePoints = DetectSilencePoints(reader, silenceThresholdDb: 0.0177, minSilenceDurationMs: 300, analysisWindowMs: 50);
double segmentSec = 120;
double searchWindowSec = 15;
// 2) Build cut list: 0, cuts near 2min multiples (snapped to silence), end
List<TimeSpan> cutPoints = ComputeCutPoints(
total: reader.TotalTime,
targetInterval: TimeSpan.FromSeconds(segmentSec),
silenceCandidates: silencePoints,
searchWindow: TimeSpan.FromSeconds(searchWindowSec),
minGapAfterCut: TimeSpan.FromSeconds(5) // avoid super-nearby duplicate cuts
);
우리가 원하는 오디오 구간을 반영한 TimeSpan 목록을 얻게 됩니다.
끝이군요, ^^ TimeSpan 목록을 얻었으니 이제 그에 맞게 오디오 청크를 (처음에 설명했던 OffsetSampleProvider를 이용해) 잘라내는 것으로 마무리할 수 있습니다.
string outputDir = Path.Combine(Environment.CurrentDirectory, "output");
Directory.CreateDirectory(outputDir);
ExportSegments(inputPath, outputDir, cutPoints, reader);
static void ExportSegments(string inputPath, string outputDir, List<TimeSpan> cuts, AudioFileReader reader)
{
string baseName = Path.GetFileNameWithoutExtension(inputPath);
for (int i = 0; i + 1 < cuts.Count; i++)
{
var start = cuts[i];
var end = cuts[i + 1];
var len = end - start;
if (len <= TimeSpan.Zero) continue;
reader.Position = 0;
var offset = new OffsetSampleProvider(reader)
{
SkipOver = start,
Take = len,
};
string outPath = Path.Combine(outputDir, $"{baseName}_part_{i + 1:00}_{FormatTime(start)}~{FormatTime(end)}.wav");
WaveFileWriter.CreateWaveFile16(outPath, offset); // writes 16-bit WAV
Console.WriteLine($"Wrote: {outPath} ({len})");
}
}
제가 테스트한 "
https://youtu.be/90HFIm2Reqk" 40여 분 정도의 동영상은 다음과 같이 21개의 청크로 나누어졌고,
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_01_00-00-00~00-01-58.wav (00:01:58.7000000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_02_00-01-58~00-03-56.wav (00:01:57.7000000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_03_00-03-56~00-06-06.wav (00:02:09.7750000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_04_00-06-06~00-07-57.wav (00:01:51.6500000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_05_00-07-57~00-10-00.wav (00:02:02.8250000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_06_00-10-00~00-12-12.wav (00:02:11.5500000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_07_00-12-12~00-14-01.wav (00:01:48.8500000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_08_00-14-01~00-15-59.wav (00:01:57.9500000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_09_00-15-59~00-18-09.wav (00:02:10.5250000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_10_00-18-09~00-19-54.wav (00:01:45.2250000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_11_00-19-54~00-22-00.wav (00:02:05.6500000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_12_00-22-00~00-24-06.wav (00:02:06.2250000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_13_00-24-06~00-25-57.wav (00:01:50.5750000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_14_00-25-57~00-28-00.wav (00:02:03.0250000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_15_00-28-00~00-30-07.wav (00:02:07.0500000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_16_00-30-07~00-32-05.wav (00:01:57.8500000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_17_00-32-05~00-34-02.wav (00:01:57.8500000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_18_00-34-02~00-36-08.wav (00:02:05.1750000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_19_00-36-08~00-38-00.wav (00:01:51.8500000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_20_00-38-00~00-39-55.wav (00:01:55.5250000)
Wrote: c:\temp\ConsoleApp2\AnyCPU\Debug\output\test_part_21_00-39-55~00-40-59.wav (00:01:03.9950000)
몇몇 음성 파일의 끝과 그다음 시작 부분을 들어보니 무음 구간을 잘 반영해 끊어진 것을 알 수 있었습니다. ^^
(
첨부 파일은 이 글의 소스 코드를 포함합니다.)
[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]