Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

"Probabilistic Programming and Bayesian Methods for Hackers" 예제 코드 실행 방법

얼마 전 트위터에서 본 내용입니다.

확률이론과 베이즈추론법 프로그래밍에 관한 전자책 Bayesian Methods for Hackers. Python기반.
; https://twitter.com/sjoonk/status/344658745562914816

PDF로 다운로드 받아서 보면 다음과 같이 책에 직접 실행해 볼 수 있는 파이썬 코드가 들어 있습니다.

bayesian_python_code_0.png

윈도우에서 쉽게 이를 테스트 해보려면 "EPD(Enthought Python Distribution)"를 다운로드하시면 됩니다.

Enthought Python Distribution Free
; https://www.enthought.com/products/epd/free/

Download Canopy 1.0, 32-bit for Windows
; https://www.enthought.com/downloads/

위의 무료 버전을 설치하고 실행하면 다음과 같은 화면이 나옵니다.

bayesian_python_code_1.png

Canopy 도구에서는 다행히 "Probabilistic Programming and Bayesian Methods for Hackers" 책에서 요구하는 구성 요소(enstaller, ipython)를 미리 내장하고 있기 때문에 더 이상 별도로 다운로드는 하지 않아도 됩니다. 단지, "Package Manager"를 실행해서 "Updates" 항목에 새로 업데이트 받을 것이 있다면 기분상 해주시면 됩니다.

자... 이제 Editor 버튼을 누르고, 우측의 "In" 명령 프롬프트에서 차례로 본문의 코드를 입력해 주면,

%pylab inline

figsize( 11, 9)

import scipy.stats as stats
dist = stats.beta
n_trials = [0,1,2,3,4,5,8,15, 50, 500]
data = stats.bernoulli.rvs(0.5, size = n_trials[-1] )
x = np.linspace(0,1,100)

for k, N in enumerate(n_trials):
    sx = subplot( len(n_trials)/2, 2, k+1)
    plt.xlabel("$p$, probability of heads") if k in [0,len(n_trials)-1] else None
    plt.setp(sx.get_yticklabels(), visible=False)
    heads = data[:N].sum()
    y = dist.pdf(x, 1 + heads, 1 + N - heads )
    plt.plot( x, y, label= "observe %d tosses,\n %d heads"%(N,heads) )
    plt.fill_between( x, 0, y, color="#348ABD", alpha = 0.4 )
    plt.vlines( 0.5, 0, 4, color = "k", linestyles = "--", lw=1 )
    leg = plt.legend()
    leg.get_frame().set_alpha(0.4)
    plt.autoscale(tight = True)

plt.suptitle( "Bayesian updating of posterior probabilities",
y = 1.02,
fontsize = 14);
plt.tight_layout()

다음과 같이 실행이 되는 것을 확인할 수 있습니다.

bayesian_python_code_2.png

그런데, 이걸 코드 파일로 해서 실행해 볼 수는 없을까요? 내용을 다음과 같이 다소 바꿔주면 됩니다. ^^ (휴~~~ 해당하는 모듈 찾느라 고생했네요. ^^)

import scipy.stats as stats
import matplotlib.pyplot as plt
import numpy as np

plt.figsize(11, 9)

dist = stats.beta
n_trials = [0,1,2,3,4,5,8,15, 50, 500]
data = stats.bernoulli.rvs(0.5, size = n_trials[-1] )
x = np.linspace(0,1,100)

for k, N in enumerate(n_trials):
    sx = plt.subplot( len(n_trials)/2, 2, k+1)
    plt.xlabel("$p$, probability of heads") if k in [0,len(n_trials)-1] else None
    plt.setp(sx.get_yticklabels(), visible=False)
    heads = data[:N].sum()
    y = dist.pdf(x, 1 + heads, 1 + N - heads )
    plt.plot( x, y, label= "observe %d tosses,\n %d heads"%(N,heads) )
    plt.fill_between( x, 0, y, color="#348ABD", alpha = 0.4 )
    plt.vlines( 0.5, 0, 4, color = "k", linestyles = "--", lw=1 )
    leg = plt.legend()
    leg.get_frame().set_alpha(0.4)
    plt.autoscale(tight = True)
    
plt.suptitle( "Bayesian updating of posterior probabilities",y = 1.02,fontsize = 14);
plt.tight_layout()

아마 책의 나머지 예제도 위와 같은 규칙을 적용하면 코드 파일로 저장해서 실행할 수 있을 것입니다. 다음은 실제로 실행된 화면입니다. ^^

bayesian_python_code_3.png

그나저나... 정작 책은 언제 다 읽어볼런지...? ^^

참고로, 닷넷의 경우 Bayesian 추론 관련해서 Infer.NET이라는 라이브러리가 있습니다.

Infer.NET
; http://research.microsoft.com/en-us/um/cambridge/projects/infernet/





[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 1/28/2022]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... [31]  32  33  34  35  36  37  38  39  40  41  42  43  44  45  ...
NoWriterDateCnt.TitleFile(s)
13164정성태11/18/202213929개발 환경 구성: 649. Azure - 비주얼 스튜디오를 이용한 AppService 원격 디버그 방법
13163정성태11/17/202214270개발 환경 구성: 648. 비주얼 스튜디오에서 안드로이드 기기 인식하는 방법
13162정성태11/15/202215739.NET Framework: 2069. .NET 7 - AOT(ahead-of-time) 컴파일 [1]
13161정성태11/14/202214408.NET Framework: 2068. C# - PublishSingleFile로 배포한 이미지의 역어셈블 가능 여부 (난독화 필요성) [4]
13160정성태11/11/202214379.NET Framework: 2067. C# - PublishSingleFile 적용 시 native/managed 모듈 통합 옵션
13159정성태11/10/202217677.NET Framework: 2066. C# - PublishSingleFile과 관련된 옵션 [3]
13158정성태11/9/202213376오류 유형: 826. Workload definition 'wasm-tools' in manifest 'microsoft.net.workload.mono.toolchain' [...] conflicts with manifest 'microsoft.net.workload.mono.toolchain.net7'
13157정성태11/8/202214397.NET Framework: 2065. C# - Mutex의 비동기 버전파일 다운로드1
13156정성태11/7/202215993.NET Framework: 2064. C# - Mutex와 Semaphore/SemaphoreSlim 차이점파일 다운로드1
13155정성태11/4/202214237디버깅 기술: 183. TCP 동시 접속 (연결이 아닌) 시도를 1개로 제한한 서버
13154정성태11/3/202214722.NET Framework: 2063. .NET 5+부터 지원되는 GC.GetGCMemoryInfo파일 다운로드1
13153정성태11/2/202216044.NET Framework: 2062. C# - 코드로 재현하는 소켓 상태(SYN_SENT, SYN_RECV)
13152정성태11/1/202214965.NET Framework: 2061. ASP.NET Core - DI로 추가한 클래스의 초기화 방법 [1]
13151정성태10/31/202214408C/C++: 161. Windows 11 환경에서 raw socket 테스트하는 방법파일 다운로드1
13150정성태10/30/202213282C/C++: 160. Visual Studio 2022로 빌드한 C++ 프로그램을 위한 다른 PC에서 실행하는 방법
13149정성태10/27/202213862오류 유형: 825. C# - CLR ETW 이벤트 수신이 GCHeapStats_V1/V2에 대해 안 되는 문제파일 다운로드1
13148정성태10/26/202213821오류 유형: 824. msbuild 에러 - error NETSDK1005: Assets file '...\project.assets.json' doesn't have a target for 'net5.0'. Ensure that restore has run and that you have included 'net5.0' in the TargetFramew
13147정성태10/25/202213068오류 유형: 823. Visual Studio 2022 - Unable to attach to CoreCLR. The debugger's protocol is incompatible with the debuggee.
13146정성태10/24/202214383.NET Framework: 2060. C# - Java의 Xmx와 유사한 힙 메모리 최댓값 제어 옵션 HeapHardLimit
13145정성태10/21/202214998오류 유형: 822. db2 - Password validation for user db2inst1 failed with rc = -2146500508
13144정성태10/20/202214700.NET Framework: 2059. ClrMD를 이용해 윈도우 환경의 메모리 덤프로부터 닷넷 모듈을 추출하는 방법파일 다운로드1
13143정성태10/19/202215637오류 유형: 821. windbg/sos - Error code - 0x000021BE
13142정성태10/18/202220433도서: 시작하세요! C# 12 프로그래밍
13141정성태10/17/202216160.NET Framework: 2058. [in,out] 배열을 C#에서 C/C++로 넘기는 방법 - 세 번째 이야기파일 다운로드1
13140정성태10/11/202215566C/C++: 159. C/C++ - 리눅스 환경에서 u16string 문자열을 출력하는 방법 [2]
13139정성태10/9/202213662.NET Framework: 2057. 리눅스 환경의 .NET Core 3/5+ 메모리 덤프로부터 모든 닷넷 모듈을 추출하는 방법파일 다운로드1
... [31]  32  33  34  35  36  37  38  39  40  41  42  43  44  45  ...