Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

"Probabilistic Programming and Bayesian Methods for Hackers" 예제 코드 실행 방법

얼마 전 트위터에서 본 내용입니다.

확률이론과 베이즈추론법 프로그래밍에 관한 전자책 Bayesian Methods for Hackers. Python기반.
; https://twitter.com/sjoonk/status/344658745562914816

PDF로 다운로드 받아서 보면 다음과 같이 책에 직접 실행해 볼 수 있는 파이썬 코드가 들어 있습니다.

bayesian_python_code_0.png

윈도우에서 쉽게 이를 테스트 해보려면 "EPD(Enthought Python Distribution)"를 다운로드하시면 됩니다.

Enthought Python Distribution Free
; https://www.enthought.com/products/epd/free/

Download Canopy 1.0, 32-bit for Windows
; https://www.enthought.com/downloads/

위의 무료 버전을 설치하고 실행하면 다음과 같은 화면이 나옵니다.

bayesian_python_code_1.png

Canopy 도구에서는 다행히 "Probabilistic Programming and Bayesian Methods for Hackers" 책에서 요구하는 구성 요소(enstaller, ipython)를 미리 내장하고 있기 때문에 더 이상 별도로 다운로드는 하지 않아도 됩니다. 단지, "Package Manager"를 실행해서 "Updates" 항목에 새로 업데이트 받을 것이 있다면 기분상 해주시면 됩니다.

자... 이제 Editor 버튼을 누르고, 우측의 "In" 명령 프롬프트에서 차례로 본문의 코드를 입력해 주면,

%pylab inline

figsize( 11, 9)

import scipy.stats as stats
dist = stats.beta
n_trials = [0,1,2,3,4,5,8,15, 50, 500]
data = stats.bernoulli.rvs(0.5, size = n_trials[-1] )
x = np.linspace(0,1,100)

for k, N in enumerate(n_trials):
    sx = subplot( len(n_trials)/2, 2, k+1)
    plt.xlabel("$p$, probability of heads") if k in [0,len(n_trials)-1] else None
    plt.setp(sx.get_yticklabels(), visible=False)
    heads = data[:N].sum()
    y = dist.pdf(x, 1 + heads, 1 + N - heads )
    plt.plot( x, y, label= "observe %d tosses,\n %d heads"%(N,heads) )
    plt.fill_between( x, 0, y, color="#348ABD", alpha = 0.4 )
    plt.vlines( 0.5, 0, 4, color = "k", linestyles = "--", lw=1 )
    leg = plt.legend()
    leg.get_frame().set_alpha(0.4)
    plt.autoscale(tight = True)

plt.suptitle( "Bayesian updating of posterior probabilities",
y = 1.02,
fontsize = 14);
plt.tight_layout()

다음과 같이 실행이 되는 것을 확인할 수 있습니다.

bayesian_python_code_2.png

그런데, 이걸 코드 파일로 해서 실행해 볼 수는 없을까요? 내용을 다음과 같이 다소 바꿔주면 됩니다. ^^ (휴~~~ 해당하는 모듈 찾느라 고생했네요. ^^)

import scipy.stats as stats
import matplotlib.pyplot as plt
import numpy as np

plt.figsize(11, 9)

dist = stats.beta
n_trials = [0,1,2,3,4,5,8,15, 50, 500]
data = stats.bernoulli.rvs(0.5, size = n_trials[-1] )
x = np.linspace(0,1,100)

for k, N in enumerate(n_trials):
    sx = plt.subplot( len(n_trials)/2, 2, k+1)
    plt.xlabel("$p$, probability of heads") if k in [0,len(n_trials)-1] else None
    plt.setp(sx.get_yticklabels(), visible=False)
    heads = data[:N].sum()
    y = dist.pdf(x, 1 + heads, 1 + N - heads )
    plt.plot( x, y, label= "observe %d tosses,\n %d heads"%(N,heads) )
    plt.fill_between( x, 0, y, color="#348ABD", alpha = 0.4 )
    plt.vlines( 0.5, 0, 4, color = "k", linestyles = "--", lw=1 )
    leg = plt.legend()
    leg.get_frame().set_alpha(0.4)
    plt.autoscale(tight = True)
    
plt.suptitle( "Bayesian updating of posterior probabilities",y = 1.02,fontsize = 14);
plt.tight_layout()

아마 책의 나머지 예제도 위와 같은 규칙을 적용하면 코드 파일로 저장해서 실행할 수 있을 것입니다. 다음은 실제로 실행된 화면입니다. ^^

bayesian_python_code_3.png

그나저나... 정작 책은 언제 다 읽어볼런지...? ^^

참고로, 닷넷의 경우 Bayesian 추론 관련해서 Infer.NET이라는 라이브러리가 있습니다.

Infer.NET
; http://research.microsoft.com/en-us/um/cambridge/projects/infernet/





[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 1/28/2022]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  5  [6]  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13829정성태11/25/20246691스크립트: 67. 파이썬 - Windows 버전에서 함께 설치되는 py.exe
13828정성태11/25/20245180개발 환경 구성: 735. Azure - 압축 파일을 이용한 web app 배포 시 디렉터리 구분이 안 되는 문제파일 다운로드1
13827정성태11/25/20246010Windows: 273. Windows 환경의 파일 압축 방법 (tar, Compress-Archive)
13826정성태11/21/20246388닷넷: 2313. C# - (비밀번호 등의) Console로부터 입력받을 때 문자열 출력 숨기기(echo 끄기)파일 다운로드1
13825정성태11/21/20247044Linux: 110. eBPF / bpf2go - BPF_RINGBUF_OUTPUT / BPF_MAP_TYPE_RINGBUF 사용법
13824정성태11/20/20245425Linux: 109. eBPF / bpf2go - BPF_PERF_OUTPUT / BPF_MAP_TYPE_PERF_EVENT_ARRAY 사용법
13823정성태11/20/20246614개발 환경 구성: 734. Ubuntu에 docker, kubernetes (k3s) 설치
13822정성태11/20/20246493개발 환경 구성: 733. Windbg - VirtualBox VM의 커널 디버거 연결 시 COM 포트가 없는 경우
13821정성태11/18/20246094Linux: 108. Linux와 Windows의 프로세스/스레드 ID 관리 방식
13820정성태11/18/20246551VS.NET IDE: 195. Visual C++ - C# 프로젝트처럼 CopyToOutputDirectory 항목을 추가하는 방법
13819정성태11/15/20245128Linux: 107. eBPF - libbpf CO-RE의 CONFIG_DEBUG_INFO_BTF 빌드 여부에 대한 의존성
13818정성태11/15/20246672Windows: 272. Windows 11 24H2 - sudo 추가
13817정성태11/14/20245895Linux: 106. eBPF / bpf2go - (BPF_MAP_TYPE_HASH) Map을 이용한 전역 변수 구현
13816정성태11/14/20246851닷넷: 2312. C#, C++ - Windows / Linux 환경의 Thread Name 설정파일 다운로드1
13815정성태11/13/20245468Linux: 105. eBPF - bpf2go에서 전역 변수 설정 방법
13814정성태11/13/20246110닷넷: 2311. C# - Windows / Linux 환경에서 Native Thread ID 가져오기파일 다운로드1
13813정성태11/12/20246654닷넷: 2310. .NET의 Rune 타입과 emoji 표현파일 다운로드1
13812정성태11/11/202410246오류 유형: 933. Active Directory - The forest functional level is not supported.
13811정성태11/11/20245851Linux: 104. Linux - COLUMNS 환경변수가 언제나 80으로 설정되는 환경
13810정성태11/10/20246863Linux: 103. eBPF (bpf2go) - Tracepoint를 이용한 트레이스 (BPF_PROG_TYPE_TRACEPOINT)
13809정성태11/10/20246498Windows: 271. 윈도우 서버 2025 마이그레이션
13808정성태11/9/20246806오류 유형: 932. Linux - 커널 업그레이드 후 "error: bad shim signature" 오류 발생
13807정성태11/9/20245680Linux: 102. Linux - 커널 이미지 파일 서명 (Ubuntu 환경)
13806정성태11/8/20245861Windows: 270. 어댑터 상세 정보(Network Connection Details) 창의 내용이 비어 있는 경우
13805정성태11/8/20245470오류 유형: 931. Active Directory의 adprep 또는 복제가 안 되는 경우
13804정성태11/7/20247045Linux: 101. eBPF 함수의 인자를 다루는 방법
1  2  3  4  5  [6]  7  8  9  10  11  12  13  14  15  ...