Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

"Probabilistic Programming and Bayesian Methods for Hackers" 예제 코드 실행 방법

얼마 전 트위터에서 본 내용입니다.

확률이론과 베이즈추론법 프로그래밍에 관한 전자책 Bayesian Methods for Hackers. Python기반.
; https://twitter.com/sjoonk/status/344658745562914816

PDF로 다운로드 받아서 보면 다음과 같이 책에 직접 실행해 볼 수 있는 파이썬 코드가 들어 있습니다.

bayesian_python_code_0.png

윈도우에서 쉽게 이를 테스트 해보려면 "EPD(Enthought Python Distribution)"를 다운로드하시면 됩니다.

Enthought Python Distribution Free
; https://www.enthought.com/products/epd/free/

Download Canopy 1.0, 32-bit for Windows
; https://www.enthought.com/downloads/

위의 무료 버전을 설치하고 실행하면 다음과 같은 화면이 나옵니다.

bayesian_python_code_1.png

Canopy 도구에서는 다행히 "Probabilistic Programming and Bayesian Methods for Hackers" 책에서 요구하는 구성 요소(enstaller, ipython)를 미리 내장하고 있기 때문에 더 이상 별도로 다운로드는 하지 않아도 됩니다. 단지, "Package Manager"를 실행해서 "Updates" 항목에 새로 업데이트 받을 것이 있다면 기분상 해주시면 됩니다.

자... 이제 Editor 버튼을 누르고, 우측의 "In" 명령 프롬프트에서 차례로 본문의 코드를 입력해 주면,

%pylab inline

figsize( 11, 9)

import scipy.stats as stats
dist = stats.beta
n_trials = [0,1,2,3,4,5,8,15, 50, 500]
data = stats.bernoulli.rvs(0.5, size = n_trials[-1] )
x = np.linspace(0,1,100)

for k, N in enumerate(n_trials):
    sx = subplot( len(n_trials)/2, 2, k+1)
    plt.xlabel("$p$, probability of heads") if k in [0,len(n_trials)-1] else None
    plt.setp(sx.get_yticklabels(), visible=False)
    heads = data[:N].sum()
    y = dist.pdf(x, 1 + heads, 1 + N - heads )
    plt.plot( x, y, label= "observe %d tosses,\n %d heads"%(N,heads) )
    plt.fill_between( x, 0, y, color="#348ABD", alpha = 0.4 )
    plt.vlines( 0.5, 0, 4, color = "k", linestyles = "--", lw=1 )
    leg = plt.legend()
    leg.get_frame().set_alpha(0.4)
    plt.autoscale(tight = True)

plt.suptitle( "Bayesian updating of posterior probabilities",
y = 1.02,
fontsize = 14);
plt.tight_layout()

다음과 같이 실행이 되는 것을 확인할 수 있습니다.

bayesian_python_code_2.png

그런데, 이걸 코드 파일로 해서 실행해 볼 수는 없을까요? 내용을 다음과 같이 다소 바꿔주면 됩니다. ^^ (휴~~~ 해당하는 모듈 찾느라 고생했네요. ^^)

import scipy.stats as stats
import matplotlib.pyplot as plt
import numpy as np

plt.figsize(11, 9)

dist = stats.beta
n_trials = [0,1,2,3,4,5,8,15, 50, 500]
data = stats.bernoulli.rvs(0.5, size = n_trials[-1] )
x = np.linspace(0,1,100)

for k, N in enumerate(n_trials):
    sx = plt.subplot( len(n_trials)/2, 2, k+1)
    plt.xlabel("$p$, probability of heads") if k in [0,len(n_trials)-1] else None
    plt.setp(sx.get_yticklabels(), visible=False)
    heads = data[:N].sum()
    y = dist.pdf(x, 1 + heads, 1 + N - heads )
    plt.plot( x, y, label= "observe %d tosses,\n %d heads"%(N,heads) )
    plt.fill_between( x, 0, y, color="#348ABD", alpha = 0.4 )
    plt.vlines( 0.5, 0, 4, color = "k", linestyles = "--", lw=1 )
    leg = plt.legend()
    leg.get_frame().set_alpha(0.4)
    plt.autoscale(tight = True)
    
plt.suptitle( "Bayesian updating of posterior probabilities",y = 1.02,fontsize = 14);
plt.tight_layout()

아마 책의 나머지 예제도 위와 같은 규칙을 적용하면 코드 파일로 저장해서 실행할 수 있을 것입니다. 다음은 실제로 실행된 화면입니다. ^^

bayesian_python_code_3.png

그나저나... 정작 책은 언제 다 읽어볼런지...? ^^

참고로, 닷넷의 경우 Bayesian 추론 관련해서 Infer.NET이라는 라이브러리가 있습니다.

Infer.NET
; http://research.microsoft.com/en-us/um/cambridge/projects/infernet/





[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 1/28/2022]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 46  47  48  49  50  51  52  53  54  55  56  [57]  58  59  60  ...
NoWriterDateCnt.TitleFile(s)
12546정성태3/3/202118476개발 환경 구성: 545. github workflow/actions에서 빌드시 snk 파일 다루는 방법 - Encrypted secrets
12545정성태3/2/202121232.NET Framework: 1026. 닷넷 5에 추가된 POH (Pinned Object Heap) [10]
12544정성태2/26/202121597.NET Framework: 1025. C# - Control의 Invalidate, Update, Refresh 차이점 [2]
12543정성태2/26/202119265VS.NET IDE: 158. C# - 디자인 타임(design-time)과 런타임(runtime)의 코드 실행 구분
12542정성태2/20/202120912개발 환경 구성: 544. github repo의 Release 활성화 및 Actions를 이용한 자동화 방법 [1]
12541정성태2/18/202118444개발 환경 구성: 543. 애저듣보잡 - Github Workflow/Actions 소개
12540정성태2/17/202119882.NET Framework: 1024. C# - Win32 API에 대한 P/Invoke를 대신하는 Microsoft.Windows.CsWin32 패키지
12539정성태2/16/202119673Windows: 189. WM_TIMER의 동작 방식 개요파일 다운로드1
12538정성태2/15/202120230.NET Framework: 1023. C# - GC 힙이 아닌 Native 힙에 인스턴스 생성 - 0SuperComicLib.LowLevel 라이브러리 소개 [2]
12537정성태2/11/202120278.NET Framework: 1022. UI 요소의 접근은 반드시 그 UI를 만든 스레드에서! - 두 번째 이야기 [2]
12536정성태2/9/202119369개발 환경 구성: 542. BDP(Bandwidth-delay product)와 TCP Receive Window
12535정성태2/9/202118462개발 환경 구성: 541. Wireshark로 확인하는 LSO(Large Send Offload), RSC(Receive Segment Coalescing) 옵션
12534정성태2/8/202119192개발 환경 구성: 540. Wireshark + C/C++로 확인하는 TCP 연결에서의 closesocket 동작 [1]파일 다운로드1
12533정성태2/8/202117680개발 환경 구성: 539. Wireshark + C/C++로 확인하는 TCP 연결에서의 shutdown 동작파일 다운로드1
12532정성태2/6/202119474개발 환경 구성: 538. Wireshark + C#으로 확인하는 ReceiveBufferSize(SO_RCVBUF), SendBufferSize(SO_SNDBUF) [3]
12531정성태2/5/202117980개발 환경 구성: 537. Wireshark + C#으로 확인하는 PSH flag와 Nagle 알고리듬파일 다운로드1
12530정성태2/4/202121414개발 환경 구성: 536. Wireshark + C#으로 확인하는 TCP 통신의 Receive Window
12529정성태2/4/202119918개발 환경 구성: 535. Wireshark + C#으로 확인하는 TCP 통신의 MIN RTO [1]
12528정성태2/1/202119706개발 환경 구성: 534. Wireshark + C#으로 확인하는 TCP 통신의 MSS(Maximum Segment Size) - 윈도우 환경
12527정성태2/1/202119698개발 환경 구성: 533. Wireshark + C#으로 확인하는 TCP 통신의 MSS(Maximum Segment Size) - 리눅스 환경파일 다운로드1
12526정성태2/1/202116425개발 환경 구성: 532. Azure Devops의 파이프라인 빌드 시 snk 파일 다루는 방법 - Secure file
12525정성태2/1/202115287개발 환경 구성: 531. Azure Devops - 파이프라인 실행 시 빌드 이벤트를 생략하는 방법
12524정성태1/31/202115819개발 환경 구성: 530. 기존 github 프로젝트를 Azure Devops의 빌드 Pipeline에 연결하는 방법 [1]
12523정성태1/31/202117693개발 환경 구성: 529. 기존 github 프로젝트를 Azure Devops의 Board에 연결하는 방법
12522정성태1/31/202119907개발 환경 구성: 528. 오라클 클라우드의 리눅스 VM - 9000 MTU Jumbo Frame 테스트
12521정성태1/31/202118204개발 환경 구성: 527. 이더넷(Ethernet) 환경의 TCP 통신에서 MSS(Maximum Segment Size) 확인 [1]
... 46  47  48  49  50  51  52  53  54  55  56  [57]  58  59  60  ...