Microsoft MVP성태의 닷넷 이야기
.NET Framework: 400. 눈으로 확인하는 LayoutKind 옵션 효과 [링크 복사], [링크+제목 복사],
조회: 33680
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)
(시리즈 글이 2개 있습니다.)
.NET Framework: 400. 눈으로 확인하는 LayoutKind 옵션 효과
; https://www.sysnet.pe.kr/2/0/1558

닷넷: 2250. PInvoke 호출 시 참조 타입(class)을 마샬링하는 [IN], [OUT] 특성
; https://www.sysnet.pe.kr/2/0/13609




눈으로 확인하는 LayoutKind 옵션 효과

와~~~ ^^ 재미있는 거 하나 또 배웠습니다. ^^

[제목] 객체의 메모리 레이아웃에 대하여
; http://www.csharpstudy.com/network/DevNote/Article/1009

이에 대해 제가 미진하게 테스트해서 올린 글이 있었는데요.

LayoutKind 옵션에 대해
; https://www.sysnet.pe.kr/2/0/1557

이 글에 대해 원글 저자이신 Alex님이 덧글을 달아주셨고 그래서 다시 정리해서 이렇게 글을 남깁니다. ^^




"[제목] 객체의 메모리 레이아웃에 대하여" 글에서 소개한 다음의 내용을 직접 확인하는 방법을 알아보겠습니다.

Sequential Layout은 Managed Memory에서 마샬링을 사용해 Unmanaged Memory로 옮길 때 각 필드의 순서가 Unmanaged Memory에서 유지되는 레이아웃이다. 위의 예제에서 MyStruct 구조체는 [StructLayout(LayoutKind.Sequential)]을 사용하고 있는데, 이는 Managed 메모리 영역에서는 순서가 어떨지 모르지만, Unmanaged Memory로 옮겨질 때는 반드시 필드 순서대로 데이타가 옮겨진다는 것을 의미한다.


즉, 위의 글에 따라 LayoutKind 옵션을 정리하면 다음과 같은 식입니다.

Layout 관리 메모리 필드 위치 보장 비관리 메모리 필드 위치 보장
Auto X X
Sequential X O
Explicit O O

그럼 이 옵션들이 실제로 그렇게 동작하는지 이제 확인해 보겠습니다. ^^

테스트 예제는 다음과 같이 구성해 보았습니다.

using System;
using System.Runtime.InteropServices;

namespace ConsoleApplication1
{
    [StructLayout(LayoutKind.Auto)]
    class MyClassA
    {
        public int i = 1;
        public string s = "2";
        public double d = 2;
        public byte b = 3;
    }

    [StructLayout(LayoutKind.Sequential, Pack = 1)] 
    class MyClassB
    {
        public int i = 1;
        [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 16)]
        public string s = "2";
        public double d = 3;
        public byte b = 4;
    }

    [StructLayout(LayoutKind.Explicit, Pack = 1)]
    class MyClassC
    {
        [FieldOffset(0)]
        public int i = 1;
        [FieldOffset(4)]
        [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 16)]
        public string s = "2";
        [FieldOffset(4 + 16)]
        public double d = 3;
        [FieldOffset(4 + 16 + 8)]
        public byte b = 4;
    }

    class Program
    {
        static void Main(string[] args)
        {
            MyClassA var1 = new MyClassA();
            MyClassB var2 = new MyClassB();
            MyClassC var3 = new MyClassC();

            Console.ReadLine();
        }
    }
}

windbg를 이용해 3개의 객체가 어떤 레이아웃으로 관리 힙에 할당되어 있는지 보려면 다음과 같은 명령어 과정을 거치면 됩니다.

0:006> .loadby sos clr

0:000> !name2ee *!ConsoleApplication1.MyClassA
Module:      720c1000
Assembly:    mscorlib.dll
--------------------------------------
Module:      007f2ed4
Assembly:    ConsoleApplication1.exe
Token:       02000002
MethodTable: 007f38b4
EEClass:     007f13ac
Name:        ConsoleApplication1.MyClassA

0:004> !dumpheap -mt 007f38b4
 Address       MT     Size
02492508 007f38b4       28     

Statistics:
      MT    Count    TotalSize Class Name
007f38b4        1           28 ConsoleApplication1.MyClassA
Total 1 objects

0:004> !dumpobj 02492508
Name:        ConsoleApplication1.MyClassA
MethodTable: 007f38b4
EEClass:     007f13ac
Size:        28(0x1c) bytes
File:        d:\...\bin\Debug\ConsoleApplication1.exe
Fields:
      MT    Field   Offset                 Type VT     Attr    Value Name
724d3c50  4000001       10         System.Int32  1 instance        1 i
724d2300  4000002        c        System.String  0 instance 02492524 s
724cb5a0  4000003        4        System.Double  1 instance 2.000000 d
724d36b4  4000004       14          System.Byte  1 instance        3 b

보시는 바와 같이 Auto 레이아웃의 MyClassA는 관리 힙에 할당된 필드의 메모리 순서가 제멋대로입니다. 이런 식으로 MyClassB, MyClassC를 확인하면 다음과 같습니다.

0:004> !dumpobj 02492534 
Name:        ConsoleApplication1.MyClassB
MethodTable: 007f394c
EEClass:     007f1400
Size:        28(0x1c) bytes
File:        d:\...\bin\Debug\ConsoleApplication1.exe
Fields:
      MT    Field   Offset                 Type VT     Attr    Value Name
724d3c50  4000005       10         System.Int32  1 instance        1 i
724d2300  4000006        c        System.String  0 instance 02492524 s
724cb5a0  4000007        4        System.Double  1 instance 3.000000 d
724d36b4  4000008       14          System.Byte  1 instance        4 b

0:004> !dumpobj 02492550 
Name:        ConsoleApplication1.MyClassC
MethodTable: 007f39e4
EEClass:     007f14c8
Size:        40(0x28) bytes
File:        d:\...\bin\Debug\ConsoleApplication1.exe
Fields:
      MT    Field   Offset                 Type VT     Attr    Value Name
724d3c50  4000009        4         System.Int32  1 instance        1 i
724d2300  400000a        8        System.String  0 instance 02492524 s
724cb5a0  400000b       18        System.Double  1 instance 3.000000 d
724d36b4  400000c       20          System.Byte  1 instance        4 b

이 정도면 관리 메모리에서의 필드 배치 검증은 되었겠죠! ^^




그럼, 비관리 메모리로 마샬링되었을 때의 필드 배치는 어떤 방법을 통해서 알 수 있을까요?

간단하게 Marshal.StructureToPtr 메서드를 이용하면 가능합니다. 따라서 이전 예제에서 다음과 같은 코드를 추가해 주면 됩니다.

int sizeofA = Marshal.SizeOf(var1);
int sizeofB = Marshal.SizeOf(var2);
int sizeofC = Marshal.SizeOf(var3);

IntPtr ptrA = Marshal.AllocCoTaskMem(sizeofA);
Marshal.StructureToPtr(var1, ptrA, false);

IntPtr ptrB = Marshal.AllocCoTaskMem(sizeofB);
Marshal.StructureToPtr(var2, ptrB, false);

IntPtr ptrC = Marshal.AllocCoTaskMem(sizeofC);
Marshal.StructureToPtr(var3, ptrC, false);

그런데, 이 예제를 실행시키면 2군데에서 런타임 오류가 발생합니다. MyClassA 타입의 경우 Auto Layout이 사용되었기 때문에 unmanaged 메모리로의 변환은 물론 크기까지도 가늠할 수 없기 때문에 Marshal.SizeOf 및 StructureToPtr 메서드에서 각각 다음과 같은 오류가 발생합니다.

Unhandled Exception: System.ArgumentException: Type 'ConsoleApplication1.MyClassA' cannot be marshaled as an unmanaged structure; no meaningful size or offset can be computed.
at System.Runtime.InteropServices.Marshal.SizeOfHelper(Type t, Boolean throwIfNotMarshalable)
at System.Runtime.InteropServices.Marshal.SizeOf(Object structure) at ConsoleApplication1.Program.Main(String[] args) in d:\...\ConsoleApplication1\Program.cs:line 52


Unhandled Exception: System.ArgumentException: The specified structure must be blittable or have layout information.
Parameter name: structure
at System.Runtime.InteropServices.Marshal.InternalStructureToPtr(Object structure, IntPtr ptr, Boolean fDeleteOld)
at System.Runtime.InteropServices.Marshal.StructureToPtr(Object structure, IntPtr ptr, Boolean fDeleteOld) at ConsoleApplication1.Program.Main(String[] args) in d:\...\ConsoleApplication1\ConsoleApplication1\Program.cs:line 57


따라서 그 부분은 주석 처리를 하고 진행합니다. ^^ (말인즉, MyClassA는 비관리 메모리의 필드 배치를 확인할 수 없습니다.)

int sizeofA = 100; //Marshal.SizeOf(var1);
int sizeofB = Marshal.SizeOf(var2);
int sizeofC = Marshal.SizeOf(var3);

IntPtr ptrA = Marshal.AllocCoTaskMem(sizeofA);
// Marshal.StructureToPtr(var1, ptrA, false);

이제 Console.ReadLine 부근에 BP(BreakPoint)를 잡은 후 예제를 Visual Studio에서 실행하면 ptrB, ptrC의 주소에 직렬화된 객체의 필드 값들을 확인할 수 있습니다.

layoutkind_field_info_1.png

이를 통해 ptrB, ptrC의 값들을 하나씩 분석해 보면 다음과 같은 결과가 나옵니다.

== ptrB ==

0x006584A8  01 00 00 00 32 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ....2....................
0x006584C1  00 08 40 04 ab ab ab ab ab ab ab ab fe ee fe 00 00 00 00 00 00 00 00 f8 8b  ..@.???????????........??

01 00 00 00                                     : int 4bytes == 0x00000001
32 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 : TStr 16bytes == "2"
00 00 00 00 00 00 00 08 40                      : double 8bytes == 3 (부동 소수점 표현)
04                                              : byte 1byte == 4


== ptrC ==

0x00DAE988  01 00 00 00 32 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ....2....................
0x00DAE9A1  00 08 40 04 ab ab ab ab ab ab ab ab fe ee fe 00 00 00 00 00 00 00 00 9e 7e  ..@.???????????........?~

01 00 00 00                                     : int 4bytes == 0x00000001
32 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 : TStr 16bytes == "2"
00 00 00 00 00 00 00 08 40                      : double 8bytes == 3 (부동 소수점 표현)
04                                              : byte 1byte == 4

보시는 것처럼 MyClassB, MyClassC의 필드 배치가 정확하게 일치합니다. 따라서 Sequential, Explicit 유형의 클래스는 비관리 메모리에서 필드의 정의에 따른 위치가 그대로 보존됨을 알 수 있습니다.

이 때문에 일단 이런 식으로 직렬화된 클래스는 다음과 같이 C/C++에 전달하는 것도 가능합니다.

// ==== C++ Win32 DLL
#pragma pack(1)

typedef struct tagMyClassB
{
    int i;
    char s[16];
    double d;
    BYTE b;
} MyClassB;

typedef struct tagMyClassC
{
    int i;
    char s[16];
    double d;
    byte b;
} MyClassC;

WIN32PROJECT1_API void fnWin32Project1(MyClassB *ptr)
{
    printf("i: %d\n", ptr->i);
    printf("s: %S\n", ptr->s);
    printf("d: %lf\n", ptr->d);
    printf("b: %d\n\n", ptr->b);
}

WIN32PROJECT1_API void fnWin32Project2(MyClassC *ptr)
{
    printf("i: %d\n", ptr->i);
    printf("s: %S\n", ptr->s);
    printf("d: %lf\n", ptr->d);
    printf("b: %d\n\n", ptr->b);
}

using System;
using System.Runtime.InteropServices;

namespace ConsoleApplication1
{
    // ...[생략]...

    class Program
    {
        [DllImport("Win32Project1.dll", CallingConvention = CallingConvention.Cdecl)]
        static extern void fnWin32Project1(IntPtr cl);
        [DllImport("Win32Project1.dll", CallingConvention = CallingConvention.Cdecl)]
        static extern void fnWin32Project2(IntPtr cl);

        static void Main(string[] args)
        {
            MyClassA var1 = new MyClassA();
            MyClassB var2 = new MyClassB();
            MyClassC var3 = new MyClassC();

            // ...[생략]...

            fnWin32Project1(ptrB);
            fnWin32Project2(ptrC);

            Console.ReadLine();
        }
    }
}




(취소시킨) 아래의 글을 쓰면서 제가 가장 궁금했던 것은,

LayoutKind 옵션에 대해
; https://www.sysnet.pe.kr/2/0/1557

굳이 Sequential에서 관리/비관리 메모리의 구조가 다를 이유가 있었을까 하는 점입니다. 제가 생각하기에는 그것이 매우 비효율적인 작업이라고 여겼기 때문인데요. 이번 테스트를 통해서 오히려 그것이 효율적인 메모리 관리임을 알게 되었습니다.

MyClassB, MyClassC의 windbg 결과를 좀 더 살펴보면 왜 그것이 효율적인지에 대한 답이 나옵니다.

0:004> !name2ee *!ConsoleApplication1.MyClassB
Module:      720c1000
Assembly:    mscorlib.dll
--------------------------------------
Module:      00922ed4
Assembly:    ConsoleApplication1.exe
Token:       02000003
MethodTable: 0092394c
EEClass:     00921418
Name:        ConsoleApplication1.MyClassB

0:004> !dumpheap -mt 0092394c
 Address       MT     Size
025c25bc 0092394c       28     

Statistics:
      MT    Count    TotalSize Class Name
0092394c        1           28 ConsoleApplication1.MyClassB
Total 1 objects

위의 결과를 보면 Sequential로 지정된 MyClassB에 할당된 객체의 크기는 총 28바이트입니다. 반면 Explicit로 지정된 MyClassC에 할당된 객체의 크기는 40바이트로 나옵니다.

0:004> !name2ee *!ConsoleApplication1.MyClassC
Module:      720c1000
Assembly:    mscorlib.dll
--------------------------------------
Module:      00922ed4
Assembly:    ConsoleApplication1.exe
Token:       02000004
MethodTable: 009239e4
EEClass:     009214e0
Name:        ConsoleApplication1.MyClassC


0:004> !dumpheap -mt 009239e4
 Address       MT     Size
025c25d8 009239e4       40     

Statistics:
      MT    Count    TotalSize Class Name
009239e4        1           40 ConsoleApplication1.MyClassC
Total 1 objects

왜 이렇게 메모리 크기의 차이가 심하게 발생하는지 각각에 할당된 힙 메모리 사용을 한번 살펴볼까요? ^^

0:004> db 025c25bc 
025c25bc  4c 39 92 00 00 00 00 00-00 00 08 40 ac 25 5c 02  L9.........@.%\.
025c25cc  01 00 00 00 04 00 00 00-00 00 00 00 e4 39 92 00  .............9..
025c25dc  01 00 00 00 ac 25 5c 02-00 00 00 00 00 00 00 00  .....%\.........

4c 39 92 00             : 0x0092394c == MethodTable
00 00 00 00-00 00 08 40 : Offset 위치 0x04 - System.Double 값
ac 25 5c 02             : Offset 위치 0x0c - System.String의 힙 주소 == 0x025c25ac
01 00 00 00             : Offset 위치 0x10 - System.Int32 값
04 00 00 00             : Offset 위치 0x14 - System.Byte 값 (마지막 4바이트 정렬)

Sequential 형식의 MyClassB는 24바이트에 syncblock 4바이트까지 더해져 총 28바이트가 소비됩니다.

반면 Explicit 형식의 MyClassC는 중간에 쓸데없이 12바이트 영역의 메모리가 차지하게 됩니다.

0:004> db 025c25d8 
025c25d8  e4 39 92 00 01 00 00 00-ac 25 5c 02 00 00 00 00  .9.......%\.....
025c25e8  00 00 00 00 00 00 00 00-00 00 00 00 00 00 08 40  ...............@
025c25f8  04 00 00 00 00 00 01 00-18 7d 4d 72 00 00 00 00  .........}Mr....

e4 39 92 00             : 0x009239e4 == MethodTable
01 00 00 00             : Offset 위치 0x04 - System.Int32 값
ac 25 5c 02             : Offset 위치 0x08 - System.String의 힙 주소 == 0x025c25ac
00 00 00 00 00 00 00 00 00 00 00 00 : Explicit로 인해 필요 없이 소비된 12바이트
00 00 00 00 00 00 08 40 : Offset 위치 0x18 - System.Double 값
04 00 00 00             : Offset 위치 0x20 - System.Byte 값 (마지막 4바이트 정렬)

즉, 관리 메모리와 비관리 메모리의 레이아웃을 맞추기 위해 Explicit는 오히려 관리 메모리의 저장 효율을 떨어뜨리고 있는 것입니다. 물론, 1:1로 매핑되기 때문에 비관리 메모리로의 복사는 빠를 것입니다.

이로 인해 결론이 정리되는군요. ^^

Layout 용도
Auto 비관리 메모리에 전달되지 않는 모든 닷넷 클래스
Sequential Offset 위치를 지정해야 할 특별한 이유가 없고, 마샬링 성능이 중요하지 않다면?
Explicit Offset 위치를 지정해야 하거나, 마샬링 성능이 중요한 경우

(첨부 파일은 위의 코드에 사용된 예제를 담고 있습니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/10/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2016-11-01 04시28분
[요원009] 맨 위에,
"보시는 바와 같이 Auto 레이아웃의 MyClassA는 관리 힙에 할당된 필드의 메모리 순서가 제멋대로입니다. 이런 식으로 MyClassB, MyClassC를 확인하면 다음과 같습니다."

라는 코멘트를 보면, MyClassA, B, C의 필드 메모리 순서가 똑같아 보이는데, 제가 잘못 이해한 건가요?
[guest]
2016-11-01 04시35분
Name 순을 보시면 안되고, 굵은 글씨체로 부각시킨 Offset 순서를 보셔야 합니다. Offset 내용이 10, c, 4, 14로 되어 있는데, 따라서 메모리상의 순서는 d, s, i, b가 됩니다.
정성태

... 46  47  48  [49]  50  51  52  53  54  55  56  57  58  59  60  ...
NoWriterDateCnt.TitleFile(s)
12712정성태7/15/202116119개발 환경 구성: 579. Azure - 리눅스 호스팅의 Site Extension 제작 방법
12711정성태7/15/202116131개발 환경 구성: 578. Azure - Java Web App Service를 위한 Site Extension 제작 방법
12710정성태7/15/202118764개발 환경 구성: 577. MQTT - emqx.io 서비스 소개
12709정성태7/14/202114289Linux: 42. 실행 중인 docker 컨테이너에 대한 구동 시점의 docker run 명령어를 확인하는 방법
12708정성태7/14/202118507Linux: 41. 리눅스 환경에서 디스크 용량 부족 시 원인 분석 방법
12707정성태7/14/202185733오류 유형: 734. MySQL - Authentication method 'caching_sha2_password' not supported by any of the available plugins.
12706정성태7/14/202116916.NET Framework: 1076. C# - AsyncLocal 기능을 CallContext만으로 구현하는 방법 [2]파일 다운로드1
12705정성태7/13/202117306VS.NET IDE: 168. x64 DLL 프로젝트의 컨트롤이 Visual Studio의 Designer에서 보이지 않는 문제 - 두 번째 이야기
12704정성태7/12/202116095개발 환경 구성: 576. Azure VM의 서비스를 Azure Web App Service에서만 접근하도록 NSG 설정을 제한하는 방법
12703정성태7/11/202121469개발 환경 구성: 575. Azure VM에 (ICMP) ping을 허용하는 방법
12702정성태7/11/202117181오류 유형: 733. TaskScheduler에 등록된 wacs.exe의 Let's Encrypt 인증서 업데이트 문제
12701정성태7/9/202116728.NET Framework: 1075. C# - ThreadPool의 스레드는 반환 시 ThreadStatic과 AsyncLocal 값이 초기화 될까요?파일 다운로드1
12700정성태7/8/202117163.NET Framework: 1074. RuntimeType의 메모리 누수? [1]
12699정성태7/8/202115697VS.NET IDE: 167. Visual Studio 디버깅 중 GC Heap 상태를 보여주는 "Show Diagnostic Tools" 메뉴 사용법
12698정성태7/7/202119952오류 유형: 732. Windows 11 업데이트 시 3% 또는 0%에서 다운로드가 멈춘 경우
12697정성태7/7/202115018개발 환경 구성: 574. Windows 11 (Insider Preview) 설치하는 방법
12696정성태7/6/202115972VC++: 146. 운영체제의 스레드 문맥 교환(Context Switch)을 유사하게 구현하는 방법파일 다운로드2
12695정성태7/3/202116010VC++: 145. C 언어의 setjmp/longjmp 기능을 Thread Context를 이용해 유사하게 구현하는 방법파일 다운로드1
12694정성태7/2/202117945Java: 24. Azure - Spring Boot 앱을 Java SE(Embedded Web Server)로 호스팅 시 로그 파일 남기는 방법 [1]
12693정성태6/30/202114884오류 유형: 731. Azure Web App Site Extension - Failed to install web app extension [...]. {1}
12692정성태6/30/202115374디버깅 기술: 180. Azure - Web App의 비정상 종료 시 남겨지는 로그 확인
12691정성태6/30/202115623개발 환경 구성: 573. 테스트 용도이지만 테스트에 적합하지 않은 Azure D1 공유(shared) 요금제
12690정성태6/28/202116633Java: 23. Azure - 자바(Java)로 만드는 Web App Service - Tomcat 호스팅
12689정성태6/25/202118339오류 유형: 730. Windows Forms 디자이너 - The class Form1 can be designed, but is not the first class in the file. [1]
12688정성태6/24/202117654.NET Framework: 1073. C# - JSON 역/직렬화 시 리플렉션 손실을 없애는 JsonSrcGen [2]파일 다운로드1
12687정성태6/22/202114977오류 유형: 729. Invalid data: Invalid artifact, java se app service only supports .jar artifact
... 46  47  48  [49]  50  51  52  53  54  55  56  57  58  59  60  ...