Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 3개 있습니다.)

동전을 여러 더미로 나누는 경우의 수 세기(Partition Number) - 두 번째 이야기

저번 글에서 점화식을 언급하면서 이야기를 끝냈는데요.

동전을 여러 더미로 나누는 경우의 수 세기
; https://www.sysnet.pe.kr/2/0/1271

이와 관련해서 한번 정리를 해야지... 막연히 생각만 하다가 오늘 우연히 다음의 글을 보았습니다.

Enumerating integer compositions (the return of the binomial coefficients)
; http://blogs.msdn.com/b/oldnewthing/archive/2014/07/14/10541999.aspx

저 글을 보면서 "동전을 여러 더미로 나누는 경우의 수 세기"가 생각났던 것입니다. 그럼 한번 정리를 해볼까요? ^^

우선, "Enumerating integer compositions (the return of the binomial coefficients)" 글에서 언급된 동전 나누기 경우의 수를 세는 것을 보겠습니다. 글의 본문에 나오듯이 숫자 3에 대해 다음과 같이 쪼개는 것을 볼 수 있습니다.

* * *   3 
*|* *   1+2 
* *|*   2+1 
*|*|*   1+1+1 

사실 이렇게 나누는 것은 쉽습니다. ^^ (제 짧은 수학 지식으로도 예전에 읽었던 통계 책의 기억에 따라) 나누는 기준을 '칸막이'라고 생각하면 쉽다는 것을 알 수 있습니다. 게다가 2진 코드에 익숙한 우리네 개발자들이라면 칸막이의 유무를 비트로 생각하면 더욱 이해가 쉽습니다.

즉, 다음과 같이 0과 1로 대체해 보면 됩니다.

* * *   3 
 0 0

*|* *   1+2 
 1 0

* *|*   2+1 
 0 1

*|*|*   1+1+1 
 1 1

00, 10, 01, 11의 경우로 나오는데요. 그렇습니다. 바로 그 익숙한 2진수입니다. 따라서 n개의 동전인 경우 그것을 나누기 경우의 수는 2(n - 1)로 간단하게 구할 수 있습니다. 위에서는 n == 3이기 때문에 2(3 - 1)이므로 4가 나오는 것입니다.




동전 나누기 이야기를 더 하기 전에 "Enumerating integer compositions (the return of the binomial coefficients)" 글의 제목에 나온 "이항 계수(binomial coefficient)"에 대해 잠시 알아보겠습니다.

이항계수
; http://ko.wikipedia.org/wiki/%EC%9D%B4%ED%95%AD%EA%B3%84%EC%88%98

[알고리즘] 동적프로그래밍 Part 1 - 이항 계수 문제 (Binomal Coefficient)
; http://destiny738.tistory.com/194

위의 글에서도 나오지만 이항계수는 "n개의 서로 다른 물건 중에서 순서 없이 k개를 뽑는 조합의 가짓수"입니다. 즉, 우리가 많이 알고 있던 nCr의 문제이고 따라서 다음의 공식으로 구해집니다.

[MathJax]
\begin{pmatrix}n \\ k\end{pmatrix} = \frac{n!}{k!(n-k)!} \hspace{35pt} if \hspace{15pt} n \geq k \geq 0 \hspace{45pt}

[Google Chart API]
TeX


정의에 따라 이 식을 그대로 factorial 계산을 이용해 구할 수 있습니다.

using System;
using System.Numerics;

class Program
{
    static void Main(string[] args)
    {
        // 7개 중에서 3개를 뽑는 조합의 가짓수 == 7C3
        Console.WriteLine(7.C(3)); // 출력 결과: 35
    }
}

static class IntExtension
{
    public static BigInteger C(this int n, int k)
    {
        return n.Factorial() / (k.Factorial() * (n - k).Factorial());
    }

    public static BigInteger Factorial(this int n)
    {
        if (n == 0)
        {
            return 1;
        }

        BigInteger result = 1;
        for (int i = 1; i <= n; i++)
        {
            result *= i;
        }

        return result;
    }
}

하지만 일반적으로 factorial은 계산량이 많기 때문에 재귀호출을 이용한 점화식을 쓰는 것이 효율적입니다. 아래의 글에 나오는 것처럼,

History: 알고리즘 대회에 필요한 수학 - 이항계수
; https://algospot.com/wiki/old/561/%EC%95%8C%EA%B3%A0%EB%A6%AC%EC%A6%98_%EB%8C%80%ED%9A%8C%EC%97%90_%ED%95%84%EC%9A%94%ED%95%9C_%EC%88%98%ED%95%99

이항 계수의 점화식이 있고,

[MathJax]
\begin{pmatrix}n \\ k \end{pmatrix} = \begin{cases} \begin{pmatrix}n - 1 \\ k - 1 \end{pmatrix} + \begin{pmatrix}n - 1 \\ k \end{pmatrix} &\mbox { if } 0 < k < n \\ 1 &\mbox { if } \: k = 0 \: or \: k = n \end{cases}

[Google Chart API]
TeXTeX



복잡하게 factorial 계산할 필요없이 곧바로 이 수식을 코드로 옮겨주면 결과가 나옵니다.

using System;
using System.Numerics;

class Program
{
    static void Main(string[] args)
    {
        Console.WriteLine(7.BC(3)); // 7.C(3)과 결과가 같은 35 출력
    }
}

static class IntExtension
{
    public static BigInteger BC(this int n, int r)
    {
        if (r == 0 || r == n)
        {
            return 1;
        }

        return (n - 1).BC(r - 1) + (n - 1).BC(r);
    }
}

그런데, 조합(Combination)하면 꼭 등장하는 것이 바로 "파스칼의 삼각형"입니다.

파스칼의 삼각형
; http://ko.wikipedia.org/wiki/%ED%8C%8C%EC%8A%A4%EC%B9%BC%EC%9D%98_%EC%82%BC%EA%B0%81%ED%98%95

          1
        1   1
      1   2   1
    1   3   3   1
  1   4   6   4   1
1   5  10  10   5   1

잘 아시는 것처럼, 이 값은 이항 전개에서의 계수들의 값과 일치하기도 합니다.

(n + k)2 = 1 * n2 + 2nk + 1

(n + k)3 = 1 * n3 + 3a2b + 3ab2 + 1



뿐만 아니라, 파스칼의 삼각형이 각 줄마다 nCr의 조합에 해당한다는 것도 꽤나 유명하지요.


[MathJax]
a_{nk} = \begin{pmatrix}n - 1 \\k - 1\end{pmatrix}

[Google Chart API]
TeX


               0C0
            1C0   1C1
        2C0    2C1    2C2
     3C0   3C1    3C2   3C3 
  4C0   4C1   4C2   4C3   4C4
5C0  5C1   5C2   5C3   5C4    5C5

즉 파스칼의 삼각형에 n번째 줄의 k번째 수는 각각 1씩 뺀 조합의 수와 일치하는 것입니다. 예를 들어, 5번째 줄의 3번째 값인 6은 (5 - 1)C(3 - 1)의 조합을 의미하고 결국 4C2의 값에 해당합니다.

따라서, 어렵게 재귀 호출을 할 필요도 없이 단순하게 파스칼의 삼각형 값만 갖는 자료 구조가 있는 경우 nCr의 수를 인덱스 번호만으로 바로 구할 수 있습니다.

using System;
using System.Collections.Generic;
using System.Diagnostics;

class Program
{
    static void Main(string[] args)
    {
        Console.WriteLine(PascalTriangle(4, 2)); // 출력 결과: 6
    }
    
    public static int PascalTriangle(int n, int r)
    {
        List<int[]> list = new List<int[]>();

        for (int i = 0; i <= n; i++)
        {
            list.Add(new int[i + 1]);

            for (int j = 0; j < i + 1; j++)
            {
                if (j == 0 || j == i)
                {
                    list[i][j] = 1;
                }
                else
                {
                    list[i][j] = list[i - 1][j - 1] + list[i - 1][j];
                }
            }
        }

        return list[n][r];
    }
}

가볍게 성능 테스트를 해볼까요? n == 30, r == 12로 한 경우 재귀 호출을 했던 2번째 방식이 가장 극악의 성능을 보여줬습니다.

팩토리얼 30.C(12)   : 수행 시간 69 ticks
재귀호출 30.BC(12)  : 수행 시간 32825809 ticks
파스칼 삼각형       : 수행 시간 35 ticks

소스 코드를 보면 알겠지만 팩토리얼의 경우 중간 결과값이 쉽게 int 범위를 벗어날 수 있으므로 BigInteger를 사용하는 탓에 파스칼 삼각형과 비교해 수행 시간이 아주 쪼~~~끔 밀리긴 했지만 가장 빠른 방식일 수 있습니다.

하지만, 파스칼 삼각형이 구성하는 것도 팩토리얼에 비해 뒤지지 않는 성능을 보이면서도, 일단 한번 구성된 이후로는 자연스럽게 캐시(Cache) 용도로 활용할 수 있기 때문에 성능상 가장 권장할 수 있는 방법입니다.

마지막으로, 파스칼의 삼각형은 다시 처음의 동전 더미 나누기와 연관이 됩니다. 왜냐하면 삼각형 구성에서 하나의 줄은 그 동전으로 뽑을 수 있는 모든 가짓수를 나타내기 때문입니다. 예를 들어, "Enumerating integer compositions (the return of the binomial coefficients)" 글에서 다룬 3개의 동전 무더기를 나누는 경우의 수는 2C0, 2C1, 2C2의 가짓수의 합이 되고 처음에 언급했던 것처럼 이것은 2(n - 1)이 되는 것입니다.

결국, (학창시절에 배웠던 데로) 파스칼의 삼각형의 한 줄의 합은 2(n - 1)입니다.




자, 이제 다시 "프로젝트 오일러의 76, 78번 문제"에서의 동전 무더기 나누는 문제로 돌아오겠습니다. 이것은 중복된 동전 나누기를 허용하지 않으므로 경우의 수가 다릅니다. 예를 들어 3인 경우,

3
2, 1
1, 2
1, 1, 1

위와 같이 "2, 1"과 "1, 2"에서 한 개만 포함하게 되는 것입니다. 이에 대해서는 별도로 "Partition Number"라는 문제로 바뀌게 되는데요.

Partition (number theory)
; http://en.wikipedia.org/wiki/Integer_partition

그리고 이것이 오각수 정리와 연관된다는 것을 알 수 있습니다.

Pentagonal number theorem
; http://en.wikipedia.org/wiki/Pentagonal_number_theorem

그래서 위의 글에 나온 Partition function을 보면 다음과 같은 함수가 나옵니다.


[MathJax]
p(n)=\sum_{k}(-1)^{k-1}p(n-g_{k})

[Google Chart API]
TeX


저 같은 사람은, 시그마 기호만 봐도 울렁증이 생기는데요. 다행히 이것을 쉽게 풀어 놓은 식이 함께 제공됩니다. ^^

p(n) = p(n - 1) + p(n - 2) - p(n - 5) - p(n - 7) + ...

여기서 p 함수의 인자에 빼기 값으로 1, 2, 5, 7, ... 수열이 나오는데요. 이것이 바로 프로젝트 오일러 45번 문제에서 이미 소개된 오각수입니다.

Pn = n (3n - 1) / 2    

단지, 오각수의 수열이 n = 1, 2, 3, 4, 5, ...을 대입하는 것과는 다르게 오일러의 오각수 정리에서는 n의 값으로 1, -1, 2, -2, 3, -3, ... 과 같은 식으로 대입을 하게 됩니다. 그런 경우 바로 우리가 p 함수에서 원했던 다음과 같은 수열이 나옵니다.

1, 2, 5, 7, 12, 15, 22, 26, 35, 40, ...

오호~~~ 그럼 이제 문제를 푼 것이나 다름없습니다. 단지, 재귀 호출로 이뤄져 있기 때문에 약간 복잡한 면이 있는데, 정의에 따라 p 함수는 p(0) == 1이고, p(n < 0) == 0이므로 p(n)의 계산을 다음과 같이 할 수 있습니다.

n == 1일때,
p(1) = p(1 - 1) + p(1 - 2) - ...  // 두 번째 p 함수에서 음수가 되었으므로 그 이후부터는 결과가 모두 0이 되므로 더 이상 수행할 필요가 없음. 

따라서 p(1) == p(0) == 1

n == 2일때,
p(2) = p(2 - 1) + p(2 - 2) - p(2 - 5) - ... // 세 번째 p 함수부터 0 결과 반환
       
       p(2-1) == p(1) == 1
       p(2-2) == p(0) == 1

따라서 p(2) == 2

n == 3일때,
p(3) = p(3 - 1) + p(3 - 2) - p(3 - 5) - ... // 역시 세 번째 p 함수부터 0 결과 반환

       p(3-1) == p(2), p(2)는 다시,
                 p(2) == p(2 - 1) + p(2 - 2) - p(2 - 5) - ...
                 p(2) == 2

       p(3-2) == p(1) == 1

따라서 p(3) == p(2) + p(1) == 3

어디... 이걸 C# 코드로 한번 만들어 볼까요? ^^

우선, 오각수 수열에 들어갈 n = 1, -1, 2, -2, 3, -3,... 값을 생성하는 것과 이를 오각수 식에 대입해서 나오는 결과 수열을 다음과 같이 IEnumerable 메서드로 반환할 수 있습니다.

public class Pentagonal
{
    public IEnumerable<int> GenerateN()
    {
        int result = 1;

        while (true)
        {
            yield return result;
            yield return result * -1;

            result++;
        } // 1, -1, 2, -2, 3, -3,... 수열을 반환
    }

    public IEnumerable<int> Numbers()
    {
        foreach (int k in GenerateN())
        {
            yield return k * (3 * k - 1) / 2;
        } //  1, 2, 5, 7, ... 수열을 반환
    }
}

재료가 준비되었으니, 이제 재귀 호출 구문으로 오일러 함수를 만들어 주면 됩니다.

public class EulerFunction
{
    public BigInteger P(int n)
    {
        BigInteger sum = 0;

        if (n == 0 || n == 1)
        {
            return 1;
        }

        Pentagonal pentagonal = new Pentagonal();
        int sign = 1;

        foreach (int pentagonalNumber in pentagonal.Numbers())
        {
            int diff = n - pentagonalNumber;
            if (diff < 0)
            {
                break;
            }

            if (sign % 4 == 1 || sign % 4 == 2)
            {
                sum += P(diff);
            }
            else
            {
                sum -= P(diff);
            }

            sign ++;
        }

        return sum;
    }
}

이를 이용해 다음과 같이 자연스럽게 Partition Number 조합을 얻어낼 수 있습니다.

EulerFunction eulerFunction = new EulerFunction();
for (i = 2; i < 100; i++)
{
    Console.WriteLine(i + ": " + eulerFunction.P(i));
}

물론, 이렇게 재귀호출로만 문제를 풀면 이항 계수를 얻어냈을 때 처럼 속도가 무척 느립니다. 위의 메서드는 단지 '원칙에 기반해 작성한 코드'이기 때문에 이해를 위해서만 사용하시고 ^^ 원하는 속도를 얻으려면 여기에 약간의 캐시(Cache)를 적용하면 훨씬 속도가 빨라집니다.

public class EulerFunction
{
    static List<BigInteger> _pCache = new List<BigInteger>();
    static EulerFunction()
    {
        _pCache.Add(1); // P(0) == 1
        _pCache.Add(1); // P(1) == 1
    }

    public BigInteger P(int n)
    {
        BigInteger sum = 0;

        if (_pCache.Count > n)
        {
            return _pCache[n];
        }

        Pentagonal pentagonal = new Pentagonal();
        int sign = 1;

        foreach (int pentagonalNumber in pentagonal.Numbers())
        {
            int diff = n - pentagonalNumber;
            if (diff < 0)
            {
                break;
            }

            if (sign % 4 == 1 || sign % 4 == 2)
            {
                sum += P(diff);
            }
            else
            {
                sum -= P(diff);
            }

            sign ++;
        }

        _pCache.Add(sum);
        return sum;
    }
}

대단하군요. ^^ 이 코드로 "Problem 78 (동전을 여러 더미로 나누는 경우의 수 세기)" 문제를 풀면 1분 안에 10MB 남짓한 메모리만 써서 답을 얻을 수 있습니다. 생짜로 구했을 때는 메모리가 4GB에 376초가 소요되었는데. ^^

(첨부 파일은 이 글에 나온 모든 코드를 포함하고 있습니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 8/31/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 121  122  123  124  125  126  127  128  129  130  131  [132]  133  134  135  ...
NoWriterDateCnt.TitleFile(s)
1788정성태10/22/201424210VC++: 82. COM 프로그래밍에서 HRESULT 타입의 S_FALSE는 실패일까요? 성공일까요? [2]
1787정성태10/22/201432492오류 유형: 252. COM 개체 등록시 0x8002801C 오류가 발생한다면?
1786정성태10/22/201434004디버깅 기술: 65. 프로세스 비정상 종료 시 "Debug Diagnostic Tool"를 이용해 덤프를 남기는 방법 [3]파일 다운로드1
1785정성태10/22/201423089오류 유형: 251. 이벤트 로그 - Load control template file /_controltemplates/TaxonomyPicker.ascx failed [1]
1784정성태10/22/201430663.NET Framework: 472. C/C++과 C# 사이의 메모리 할당/해제 방법파일 다운로드1
1783정성태10/21/201424481VC++: 81. 프로그래밍에서 borrowing의 개념
1782정성태10/21/201421251오류 유형: 250. 이벤트 로그 - Application Server job failed for service instance Microsoft.Office.Server.Search.Administration.SearchServiceInstance
1781정성태10/21/201421969디버깅 기술: 64. new/delete의 짝이 맞는 경우에도 메모리 누수가 발생한다면?
1780정성태10/15/201425791오류 유형: 249. The application-specific permission settings do not grant Local Activation permission for the COM Server application with CLSID
1779정성태10/15/201420996오류 유형: 248. Active Directory에서 OU가 지워지지 않는 경우
1778정성태10/10/201419428오류 유형: 247. The Netlogon service could not create server share C:\Windows\SYSVOL\sysvol\[도메인명]\SCRIPTS.
1777정성태10/10/201422452오류 유형: 246. The processing of Group Policy failed. Windows attempted to read the file \\[도메인]\sysvol\[도메인]\Policies\{...GUID...}\gpt.ini
1776정성태10/10/201419533오류 유형: 245. 이벤트 로그 - Name resolution for the name _ldap._tcp.dc._msdcs.[도메인명]. timed out after none of the configured DNS servers responded.
1775정성태10/9/201420781오류 유형: 244. Visual Studio 디버깅 (2) - Unable to break execution. This process is not currently executing the type of code that you selected to debug.
1774정성태10/9/201427696개발 환경 구성: 246. IIS 작업자 프로세스의 20분 자동 재생(Recycle)을 끄는 방법
1773정성태10/8/201430926.NET Framework: 471. 웹 브라우저로 다운로드가 되는 파일을 왜 C# 코드로 하면 안되는 걸까요? [1]
1772정성태10/3/201419731.NET Framework: 470. C# 3.0의 기본 인자(default parameter)가 .NET 1.1/2.0에서도 실행될까? [3]
1771정성태10/2/201428890개발 환경 구성: 245. 실행된 프로세스(EXE)의 명령행 인자를 확인하고 싶다면 - Sysmon [4]
1770정성태10/2/201422756개발 환경 구성: 244. 매크로 정의를 이용해 파일 하나로 C++과 C#에서 공유하는 방법 [1]파일 다운로드1
1769정성태10/1/201425514개발 환경 구성: 243. Scala 개발 환경 구성(JVM, 닷넷) [1]
1768정성태10/1/201420303개발 환경 구성: 242. 배치 파일에서 Thread.Sleep 효과를 주는 방법 [5]
1767정성태10/1/201425656VS.NET IDE: 94. Visual Studio 2012/2013에서의 매크로 구현 - Visual Commander [2]
1766정성태10/1/201423772개발 환경 구성: 241. 책 "프로그래밍 클로저: Lisp"을 읽고 나서. [1]
1765정성태9/30/201427437.NET Framework: 469. Unity3d에서 transform을 변수에 할당해 사용하는 특별한 이유가 있을까요?
1764정성태9/30/201423685오류 유형: 243. 파일 삭제가 안 되는 경우 - The action can't be comleted because the file is open in System
1763정성태9/30/201425198.NET Framework: 468. PDB 파일을 연동해 소스 코드 라인 정보를 알아내는 방법파일 다운로드1
... 121  122  123  124  125  126  127  128  129  130  131  [132]  133  134  135  ...