Microsoft MVP성태의 닷넷 이야기
디버깅 기술: 10. C++/CLI에서 제공되는 명시적인 파괴자의 비밀 [링크 복사], [링크+제목 복사],
조회: 21963
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

C++/CLI에서 제공되는 명시적인 파괴자의 비밀


저의 경우, VC++ 8.0의 C++/CLI에 대한 매력을 느끼게 된 것은 문맥 구문이니... 뭐 그런 것들이 아니었습니다. 바로 명시적인 delete 구문의 지원이었습니다. 어떻게 그것이 가능할까... 뭔가 Interop 간에 대단한 비밀이 있지 않나 싶었는데요. 역시 파고들어 보니... 결국 ^^; IL 코드 내에서 해결할 수 있을 뿐이더군요. (이제와서는, 명시적인 종료자보다 IJW를 구현한 것에 대해 더 칭찬을 해주고 싶습니다.)

우선, 본격적으로 들어가기에 앞서 미리 다음의 토픽을 먼저 봐주시기 바랍니다.

.NET IDisposable 처리 정리
; https://www.sysnet.pe.kr/2/0/347

사실, 도움말에도 나타난 위의 토픽을 굳이 한 번 더 언급한 것은 이번 토픽을 위해서였습니다.



그럼, 하나씩 한번 알아볼까요? ^^

우선 예제 코드가 하나 있어야 할 테니, 다음과 같은 클래스를 만들어서 예로 들어보겠습니다.

public ref class MyClass 
{
public:

	MyClass()
	{
	}
};

아래는 위의 코드를 사용하느 main 함수입니다.

int main(array ^args)
{
	MyClass ^myClass = gcnew MyClass();
    return 0;
}

일단, 여기까지는 크게 일반 C#/VB.NET 클래스와 다른 점이 없습니다. 그런데, 여러분이 (또는 과거의 제가) 어렴풋이 들었던 것 중에, C++/CLI에서는 delete 구문으로 개체를 명시적으로 해제하는 것을 지원한다고 했지요. 그래서 다음과 같이 delete를 추가해 보겠습니다.

int main(array ^args)
{
	MyClass ^myClass = gcnew MyClass();
	delete myClass;
    return 0;
}

과연 정말 그럴까요? 위와 같이 하면 CLR Heap에 할당된 개체가 즉시 삭제되어 메모리 관리 효율이 C++과 같아질 수 있을까요? 물론... 대답은 "아니오"입니다. 실제로, 위의 코드 부분에 대해서 ".NET Reflector"로 보면 다음과 같이 delete 코드가 확장되어 나오는 것을 확인할 수 있습니다.

internal static int main(string[] args)
{
      MyClass class1 = null;
      class1 = new MyClass();
      IDisposable disposable1 = class1 as IDisposable;
      if (disposable1 != null)
      {
            disposable1.Dispose();
      }

      return 0;
}

위의 코드를 보시고, ^^; 쓴웃음을 짓는 분도 계실 텐데요. 그렇습니다. "delete myClass;" 구문은 실제로는 해당 개체의 IDisposable 인터페이스 구현여부를 알아내서 그것의 Dispose 메서드를 호출해주는 코드로 대체되어 삽입되는 것 뿐입니다. 이건 사실 기술이라고 부를 수도 없지요. 단지 언어적인 확장에 기인한 것 뿐이니까요. 마치 C#의 경우 using 예약어를 지원하지만, 결국 생성된 코드는 try / finally에 Dispose 메서드를 불러주는 코드로 확장되는 것과 다를 바 없습니다. 실제로, 우리가 기대했던 CLR Heap의 메모리 정리 상황은 발생하지 않는다는 것이 중요할 것입니다. 위의 방식을 아셨으니, 이제 쓰게 될 나머지 부분은 다 그러한 부분의 확장으로 받아들이시면 이해가 금방 되실 텐데요.

가만 있자... 그럼 또 뭐가 있을까요? 그렇군요. 우리가 알고 있던 얘기 중에, C++/CLI는 파괴자를 구현하면 scope을 벗어나는 경우 자동으로 호출된다고 들었지요. 그럼 그 부분도 한번 살펴볼까요? 예를 위해 위의 코드를 다음과 같이 수정해 보겠습니다.

public ref class MyClass 
{
	char *m_pBuf;
public:

	MyClass()
	{
		m_pBuf = new char[ 4096 ];
	}

	~MyClass()
	{
		delete [] m_pBuf;
	}
};

scope을 벗어나는 것을 테스트하기 위해서 MyClass에 대한 명시적인 delete 없이 다음과 같은 스택 방식으로 수정을 하겠습니다.

int main(array ^args)
{
	MyClass myClass;
	return 0;
}

역시 이번에도 생성된 IL 코드를 ".NET Reflector"로 확인해 보겠습니다.

internal static int main(string[] args)
{
      int num2;
      MyClass class1 = null;
      MyClass modopt(IsConst) local1 = (MyClass modopt(IsConst)) new MyClass();
      try
      {
            class1 = local1;
            num2 = 0;
      }
      fault
      {
            class1.Dispose();
      }
      class1.Dispose();
      
      return num2;
}

오... 이런... ^^; 역시 이번에도 실제로는 Managed 클래스를 스택상에 생성하지 않고 CLR Heap에 할당하고는 fault 처리기에서 Dispose가 명시적으로 불릴 수 있도록 하는 IL 코드로 확장이 되었습니다.
재미있는 것은, MyClass를 IL 코드로 열어보면 C++ 구문의 파괴자를 구현한 것이 실제로는 다음과 같이 IDisposable 패턴으로 확장된 것을 볼 수 있습니다.

public class MyClass : IDisposable
{
      public MyClass();
      private void ~MyClass();
      public sealed override void Dispose();
      protected virtual void Dispose([MarshalAs(UnmanagedType.U1)] bool);

      private unsafe sbyte modopt(IsSignUnspecifiedByte)* m_pBuf;
}

패턴은 이전 토픽에서 살펴봤던 C#과 동일한 구조를 따르고 있습니다.

정리해 보면, C++/CLI의 자원 해제 기능은 결국 C++과 유사한 구문을 그대로 유지하되 내부적으로는 IDisposable 구문으로 확장해주는 것에 불과하다는 것입니다.

즉, C++/CLI에서 다음과 같이 코딩을 한 것은,

	MyClass ^myClass = gcnew MyClass();
	delete myClass;
	
	또는,
	
	MyClass myClass;

C#으로 다음과 같이 코딩을 해줄 수가 있습니다.

  using ( MyClass myClass = new MyClass() )
  {
  }  

C++/CLI에서는 단지 구문을 단순하게 해준다는 장점만 있을 뿐, 그 이외의 어떠한 장점도 없다는 것입니다.



이미 앞에서 다뤘던 .NET IDisposable 처리 정리의 토픽과 비교해 보시면 아직 얘기하지 않은 이야기가 하나 있음을 아시게 될 텐데요. 바로 Managed 자원 해제와 Unmanaged 자원 해제를 구분지어 해제하는 방법이 과연 무엇이냐는 것입니다. C#의 경우, IDisposable 인터페이스를 구현하고 내부적으로 Dispose(bool disposing) 메서드를 호출하는데, C++/CLI에서는 IDisposable 인터페이스를 자동으로 구현하기 때문에 bool disposing에 대한 처리를 하는 부분이 모호해지기 때문입니다. 이를 위해, C++/CLI에서는 다음과 같은 특별한 구문의 파괴자를 하나 더 지원합니다.

public ref class MyClass 
{
	char *m_pBuf;
public:

	MyClass()
	{
		m_pBuf = new char[ 4096 ];
	}

	~MyClass()
	{
		// Managed 자원과 Unmanaged 자원을 모두 해제
		delete [] m_pBuf;
	}

	!MyClass()
	{
		// Unmanaged 자원을 해제
		delete [] m_pBuf;
	}
};

이 부분에서 약간 재미난 현상을 만나게 되는데요. Unmanaged 자원에 대한 해제 코드를 중복시키지 않기 위해 ~MyClass에서 !MyClass를 아래와 같이 호출하게 되면 컴파일 오류가 발생하게 됩니다.

	~MyClass()
	{
		!MyClass(); // error C2088: '!' : illegal for class	d:\...\Test.h
	}

	!MyClass()
	{
		delete [] m_pBuf;
	}

대신에 다음과 같이 포인터 구문을 쓰게 되면 정상적으로 호출이 됩니다.

	~MyClass()
	{
		this->!MyClass(); // 또는 MyClass::!MyClass();
	}

	!MyClass()
	{
		delete [] m_pBuf;
	}



이로써, C++/CLI의 명시적인 종료자에 대해서 웬만큼 살펴본 것 같은데요.
결론을 내려보면. C++/CLI가 자원 해제 면에서 결코 우수한 언어가 아님을 알게 됩니다. 그저 Interop만 우수한 언어일 뿐.



[이 토픽에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 6/24/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 31  32  33  34  35  36  37  38  39  40  41  [42]  43  44  45  ...
NoWriterDateCnt.TitleFile(s)
12891정성태12/23/202114980스크립트: 38. 파이썬 - uwsgi의 --master 옵션
12890정성태12/23/202115240VC++: 152. Golang - (문자가 아닌) 바이트 위치를 반환하는 strings.IndexRune 함수
12889정성태12/22/202118046.NET Framework: 1123. C# - (SharpDX + DXGI) 화면 캡처한 이미지를 빠르게 JPG로 변환하는 방법파일 다운로드1
12888정성태12/21/202115166.NET Framework: 1122. C# - ImageCodecInfo 사용 시 System.Drawing.Image와 System.Drawing.Bitmap에 따른 Save 성능 차이파일 다운로드1
12887정성태12/21/202118698오류 유형: 777. OpenCVSharp4를 사용한 프로그램 실행 시 "The type initializer for 'OpenCvSharp.Internal.NativeMethods' threw an exception." 예외 발생
12886정성태12/20/202114708스크립트: 37. 파이썬 - uwsgi의 --enable-threads 옵션 [2]
12885정성태12/20/202115788오류 유형: 776. uwsgi-plugin-python3 환경에서 MySQLdb 사용 환경
12884정성태12/20/202114708개발 환경 구성: 620. Windows 10+에서 WMI root/Microsoft/Windows/WindowsUpdate 네임스페이스 제거
12883정성태12/19/202115118오류 유형: 775. uwsgi-plugin-python3 환경에서 "ModuleNotFoundError: No module named 'django'" 오류 발생
12882정성태12/18/202114634개발 환경 구성: 619. Windows Server에서 WSL을 위한 리눅스 배포본을 설치하는 방법
12881정성태12/17/202114202개발 환경 구성: 618. WSL Ubuntu 20.04에서 파이썬을 위한 uwsgi 설치 방법 (2)
12880정성태12/16/202115237VS.NET IDE: 170. Visual Studio에서 .NET Core/5+ 역어셈블 소스코드 확인하는 방법
12879정성태12/16/202121746오류 유형: 774. Windows Server 2022 + docker desktop 설치 시 WSL 2로 선택한 경우 "Failed to deploy distro docker-desktop to ..." 오류 발생
12878정성태12/15/202115980개발 환경 구성: 617. 윈도우 WSL 환경에서 같은 종류의 리눅스를 다중으로 설치하는 방법
12877정성태12/15/202115373스크립트: 36. 파이썬 - pymysql 기본 예제 코드
12876정성태12/14/202115228개발 환경 구성: 616. Custom Sources를 이용한 Azure Monitor Metric 만들기
12875정성태12/13/202114056스크립트: 35. python - time.sleep(...) 호출 시 hang이 걸리는 듯한 문제
12874정성태12/13/202113887오류 유형: 773. shell script 실행 시 "$'\r': command not found" 오류
12873정성태12/12/202115265오류 유형: 772. 리눅스 - PATH에 등록했는데도 "command not found"가 나온다면?
12872정성태12/12/202115689개발 환경 구성: 615. GoLang과 Python 빌드가 모두 가능한 docker 이미지 만들기
12871정성태12/12/202114697오류 유형: 771. docker: Error response from daemon: OCI runtime create failed
12870정성태12/9/202113830개발 환경 구성: 614. 파이썬 - PyPI 패키지 만들기 (4) package_data 옵션
12869정성태12/8/202116504개발 환경 구성: 613. git clone 실행 시 fingerprint 묻는 단계를 생략하는 방법
12868정성태12/7/202114884오류 유형: 770. twine 업로드 시 "HTTPError: 400 Bad Request ..." 오류 [1]
12867정성태12/7/202114651개발 환경 구성: 612. 파이썬 - PyPI 패키지 만들기 (3) entry_points 옵션
12866정성태12/7/202121589오류 유형: 769. "docker build ..." 시 "failed to solve with frontend dockerfile.v0: failed to read dockerfile ..." 오류
... 31  32  33  34  35  36  37  38  39  40  41  [42]  43  44  45  ...