Microsoft MVP성태의 닷넷 이야기
디버깅 기술: 10. C++/CLI에서 제공되는 명시적인 파괴자의 비밀 [링크 복사], [링크+제목 복사],
조회: 21974
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

C++/CLI에서 제공되는 명시적인 파괴자의 비밀


저의 경우, VC++ 8.0의 C++/CLI에 대한 매력을 느끼게 된 것은 문맥 구문이니... 뭐 그런 것들이 아니었습니다. 바로 명시적인 delete 구문의 지원이었습니다. 어떻게 그것이 가능할까... 뭔가 Interop 간에 대단한 비밀이 있지 않나 싶었는데요. 역시 파고들어 보니... 결국 ^^; IL 코드 내에서 해결할 수 있을 뿐이더군요. (이제와서는, 명시적인 종료자보다 IJW를 구현한 것에 대해 더 칭찬을 해주고 싶습니다.)

우선, 본격적으로 들어가기에 앞서 미리 다음의 토픽을 먼저 봐주시기 바랍니다.

.NET IDisposable 처리 정리
; https://www.sysnet.pe.kr/2/0/347

사실, 도움말에도 나타난 위의 토픽을 굳이 한 번 더 언급한 것은 이번 토픽을 위해서였습니다.



그럼, 하나씩 한번 알아볼까요? ^^

우선 예제 코드가 하나 있어야 할 테니, 다음과 같은 클래스를 만들어서 예로 들어보겠습니다.

public ref class MyClass 
{
public:

	MyClass()
	{
	}
};

아래는 위의 코드를 사용하느 main 함수입니다.

int main(array ^args)
{
	MyClass ^myClass = gcnew MyClass();
    return 0;
}

일단, 여기까지는 크게 일반 C#/VB.NET 클래스와 다른 점이 없습니다. 그런데, 여러분이 (또는 과거의 제가) 어렴풋이 들었던 것 중에, C++/CLI에서는 delete 구문으로 개체를 명시적으로 해제하는 것을 지원한다고 했지요. 그래서 다음과 같이 delete를 추가해 보겠습니다.

int main(array ^args)
{
	MyClass ^myClass = gcnew MyClass();
	delete myClass;
    return 0;
}

과연 정말 그럴까요? 위와 같이 하면 CLR Heap에 할당된 개체가 즉시 삭제되어 메모리 관리 효율이 C++과 같아질 수 있을까요? 물론... 대답은 "아니오"입니다. 실제로, 위의 코드 부분에 대해서 ".NET Reflector"로 보면 다음과 같이 delete 코드가 확장되어 나오는 것을 확인할 수 있습니다.

internal static int main(string[] args)
{
      MyClass class1 = null;
      class1 = new MyClass();
      IDisposable disposable1 = class1 as IDisposable;
      if (disposable1 != null)
      {
            disposable1.Dispose();
      }

      return 0;
}

위의 코드를 보시고, ^^; 쓴웃음을 짓는 분도 계실 텐데요. 그렇습니다. "delete myClass;" 구문은 실제로는 해당 개체의 IDisposable 인터페이스 구현여부를 알아내서 그것의 Dispose 메서드를 호출해주는 코드로 대체되어 삽입되는 것 뿐입니다. 이건 사실 기술이라고 부를 수도 없지요. 단지 언어적인 확장에 기인한 것 뿐이니까요. 마치 C#의 경우 using 예약어를 지원하지만, 결국 생성된 코드는 try / finally에 Dispose 메서드를 불러주는 코드로 확장되는 것과 다를 바 없습니다. 실제로, 우리가 기대했던 CLR Heap의 메모리 정리 상황은 발생하지 않는다는 것이 중요할 것입니다. 위의 방식을 아셨으니, 이제 쓰게 될 나머지 부분은 다 그러한 부분의 확장으로 받아들이시면 이해가 금방 되실 텐데요.

가만 있자... 그럼 또 뭐가 있을까요? 그렇군요. 우리가 알고 있던 얘기 중에, C++/CLI는 파괴자를 구현하면 scope을 벗어나는 경우 자동으로 호출된다고 들었지요. 그럼 그 부분도 한번 살펴볼까요? 예를 위해 위의 코드를 다음과 같이 수정해 보겠습니다.

public ref class MyClass 
{
	char *m_pBuf;
public:

	MyClass()
	{
		m_pBuf = new char[ 4096 ];
	}

	~MyClass()
	{
		delete [] m_pBuf;
	}
};

scope을 벗어나는 것을 테스트하기 위해서 MyClass에 대한 명시적인 delete 없이 다음과 같은 스택 방식으로 수정을 하겠습니다.

int main(array ^args)
{
	MyClass myClass;
	return 0;
}

역시 이번에도 생성된 IL 코드를 ".NET Reflector"로 확인해 보겠습니다.

internal static int main(string[] args)
{
      int num2;
      MyClass class1 = null;
      MyClass modopt(IsConst) local1 = (MyClass modopt(IsConst)) new MyClass();
      try
      {
            class1 = local1;
            num2 = 0;
      }
      fault
      {
            class1.Dispose();
      }
      class1.Dispose();
      
      return num2;
}

오... 이런... ^^; 역시 이번에도 실제로는 Managed 클래스를 스택상에 생성하지 않고 CLR Heap에 할당하고는 fault 처리기에서 Dispose가 명시적으로 불릴 수 있도록 하는 IL 코드로 확장이 되었습니다.
재미있는 것은, MyClass를 IL 코드로 열어보면 C++ 구문의 파괴자를 구현한 것이 실제로는 다음과 같이 IDisposable 패턴으로 확장된 것을 볼 수 있습니다.

public class MyClass : IDisposable
{
      public MyClass();
      private void ~MyClass();
      public sealed override void Dispose();
      protected virtual void Dispose([MarshalAs(UnmanagedType.U1)] bool);

      private unsafe sbyte modopt(IsSignUnspecifiedByte)* m_pBuf;
}

패턴은 이전 토픽에서 살펴봤던 C#과 동일한 구조를 따르고 있습니다.

정리해 보면, C++/CLI의 자원 해제 기능은 결국 C++과 유사한 구문을 그대로 유지하되 내부적으로는 IDisposable 구문으로 확장해주는 것에 불과하다는 것입니다.

즉, C++/CLI에서 다음과 같이 코딩을 한 것은,

	MyClass ^myClass = gcnew MyClass();
	delete myClass;
	
	또는,
	
	MyClass myClass;

C#으로 다음과 같이 코딩을 해줄 수가 있습니다.

  using ( MyClass myClass = new MyClass() )
  {
  }  

C++/CLI에서는 단지 구문을 단순하게 해준다는 장점만 있을 뿐, 그 이외의 어떠한 장점도 없다는 것입니다.



이미 앞에서 다뤘던 .NET IDisposable 처리 정리의 토픽과 비교해 보시면 아직 얘기하지 않은 이야기가 하나 있음을 아시게 될 텐데요. 바로 Managed 자원 해제와 Unmanaged 자원 해제를 구분지어 해제하는 방법이 과연 무엇이냐는 것입니다. C#의 경우, IDisposable 인터페이스를 구현하고 내부적으로 Dispose(bool disposing) 메서드를 호출하는데, C++/CLI에서는 IDisposable 인터페이스를 자동으로 구현하기 때문에 bool disposing에 대한 처리를 하는 부분이 모호해지기 때문입니다. 이를 위해, C++/CLI에서는 다음과 같은 특별한 구문의 파괴자를 하나 더 지원합니다.

public ref class MyClass 
{
	char *m_pBuf;
public:

	MyClass()
	{
		m_pBuf = new char[ 4096 ];
	}

	~MyClass()
	{
		// Managed 자원과 Unmanaged 자원을 모두 해제
		delete [] m_pBuf;
	}

	!MyClass()
	{
		// Unmanaged 자원을 해제
		delete [] m_pBuf;
	}
};

이 부분에서 약간 재미난 현상을 만나게 되는데요. Unmanaged 자원에 대한 해제 코드를 중복시키지 않기 위해 ~MyClass에서 !MyClass를 아래와 같이 호출하게 되면 컴파일 오류가 발생하게 됩니다.

	~MyClass()
	{
		!MyClass(); // error C2088: '!' : illegal for class	d:\...\Test.h
	}

	!MyClass()
	{
		delete [] m_pBuf;
	}

대신에 다음과 같이 포인터 구문을 쓰게 되면 정상적으로 호출이 됩니다.

	~MyClass()
	{
		this->!MyClass(); // 또는 MyClass::!MyClass();
	}

	!MyClass()
	{
		delete [] m_pBuf;
	}



이로써, C++/CLI의 명시적인 종료자에 대해서 웬만큼 살펴본 것 같은데요.
결론을 내려보면. C++/CLI가 자원 해제 면에서 결코 우수한 언어가 아님을 알게 됩니다. 그저 Interop만 우수한 언어일 뿐.



[이 토픽에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 6/24/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 46  47  48  49  50  51  [52]  53  54  55  56  57  58  59  60  ...
NoWriterDateCnt.TitleFile(s)
12640정성태5/13/202120990오류 유형: 716. RDP 연결 - Because of a protocol error (code: 0x112f), the remote session will be disconnected. [1]
12639정성태5/12/202117382오류 유형: 715. Arduino: Open Serial Monitor - The module '...\detection.node' was compiled against a different Node.js version using NODE_MODULE_VERSION
12638정성태5/12/202117619사물인터넷: 63. NodeMCU v1 ESP8266 - 펌웨어 내 파일 시스템(SPIFFS, LittleFS) 및 EEPROM 활용
12637정성태5/10/202117852사물인터넷: 62. NodeMCU v1 ESP8266 보드의 A0 핀에 다중 아날로그 센서 연결 [1]
12636정성태5/10/202118104사물인터넷: 61. NodeMCU v1 ESP8266 보드의 A0 핀 사용법 - FSR-402 아날로그 압력 센서 연동파일 다운로드1
12635정성태5/9/202116396기타: 81. OpenTabletDriver를 (관리자 권한으로 실행하지 않고도) 관리자 권한의 프로그램에서 동작하게 만드는 방법
12634정성태5/9/202114851개발 환경 구성: 572. .NET에서의 필수 무결성 제어 - 외부 Manifest 파일을 두는 방법파일 다운로드1
12633정성태5/7/202117879개발 환경 구성: 571. UAC - 관리자 권한 없이 UIPI 제약을 없애는 방법
12632정성태5/7/202119032기타: 80. (WACOM도 지원하는) Tablet 공통 디바이스 드라이버 - OpenTabletDriver
12631정성태5/5/202117892사물인터넷: 60. ThingSpeak 사물인터넷 플랫폼에 ESP8266 NodeMCU v1 + 조도 센서 장비 연동파일 다운로드1
12630정성태5/5/202118607사물인터넷: 59. NodeMCU v1 ESP8266 보드의 A0 핀 사용법 - CdS Cell(GL3526) 조도 센서 연동파일 다운로드1
12629정성태5/5/202120378.NET Framework: 1057. C# - CoAP 서버 및 클라이언트 제작 (UDP 소켓 통신) [1]파일 다운로드1
12628정성태5/4/202118272Linux: 39. Eclipse 원격 디버깅 - Cannot run program "gdb": Launching failed
12627정성태5/4/202118365Linux: 38. 라즈베리 파이 제로 용 프로그램 개발을 위한 Eclipse C/C++ 윈도우 환경 설정
12626정성태5/3/202118462.NET Framework: 1056. C# - Thread.Suspend 호출 시 응용 프로그램 hang 현상 (2)파일 다운로드1
12625정성태5/3/202116970오류 유형: 714. error CS5001: Program does not contain a static 'Main' method suitable for an entry point
12624정성태5/2/202121446.NET Framework: 1055. C# - struct/class가 스택/힙에 할당되는 사례 정리 [10]파일 다운로드1
12623정성태5/2/202117716.NET Framework: 1054. C# 9 최상위 문에 STAThread 사용 [1]파일 다운로드1
12622정성태5/2/202113550오류 유형: 713. XSD 파일을 포함한 프로젝트 - The type or namespace name 'TypedTableBase<>' does not exist in the namespace 'System.Data'
12621정성태5/1/202118448.NET Framework: 1053. C# - 특정 레지스트리 변경 시 알림을 받는 방법 [1]파일 다운로드1
12620정성태4/29/202121683.NET Framework: 1052. C# - 왜 구조체는 16 바이트의 크기가 적합한가? [1]파일 다운로드1
12619정성태4/28/202121605.NET Framework: 1051. C# - 구조체의 크기가 16바이트가 넘어가면 힙에 할당된다? [2]파일 다운로드1
12618정성태4/27/202119886사물인터넷: 58. NodeMCU v1 ESP8266 CP2102 Module을 이용한 WiFi UDP 통신 [1]파일 다운로드1
12617정성태4/26/202117127.NET Framework: 1050. C# - ETW EventListener의 Keywords별 EventId에 따른 필터링 방법파일 다운로드1
12616정성태4/26/202116825.NET Framework: 1049. C# - ETW EventListener를 상속받았을 때 초기화 순서파일 다운로드1
12615정성태4/26/202114085오류 유형: 712. Microsoft Live 로그인 - 계정을 선택하는(Pick an account) 화면에서 진행이 안 되는 문제
... 46  47  48  49  50  51  [52]  53  54  55  56  57  58  59  60  ...