Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 3개 있습니다.)
(시리즈 글이 5개 있습니다.)
Windows: 120. 윈도우 운영체제의 시간 함수 (1) - GetTickCount와 timeGetTime의 차이점
; https://www.sysnet.pe.kr/2/0/11063

Windows: 121. 윈도우 운영체제의 시간 함수 (2) - Sleep 함수의 동작 방식
; https://www.sysnet.pe.kr/2/0/11065

Windows: 122. 윈도우 운영체제의 시간 함수 (3) - QueryInterruptTimePrecise, QueryInterruptTime 함수
; https://www.sysnet.pe.kr/2/0/11066

Windows: 123. 윈도우 운영체제의 시간 함수 (4) - RTC, TSC, PM Clock, HPET Timer
; https://www.sysnet.pe.kr/2/0/11067

Windows: 124. 윈도우 운영체제의 시간 함수 (5) - TSC(Time Stamp Counter)와 QueryPerformanceCounter
; https://www.sysnet.pe.kr/2/0/11068




윈도우 운영체제의 시간 함수 (3) - QueryInterruptTimePrecise, QueryInterruptTime 함수

지난 글을 통해, GetTickCount와 timeGetTime의 동작 방식을 살펴봤는데요. GetTickCount와 timeGetTime의 문제는 결국 운영체제가 메모리에 인터럽트가 발생할 때마다 그 횟수를 저장해 둔 변수의 값을 읽어온다는 것입니다. 그런데, 왜 그런 식으로 동작해야 할까요? 그냥 타이머 장치의 시간 값을 직접 구하는 Win32 API를 제공해주면 되는 것 아닐까요?

물론 이런 API가 있지만 아쉽게도 Windows 10부터 제공합니다.

QueryInterruptTimePrecise function
; https://learn.microsoft.com/en-us/windows/win32/api/realtimeapiset/nf-realtimeapiset-queryinterrupttimeprecise

lpInterruptTimePrecise [out]
A pointer to a ULONGLONG in which to receive the interrupt-time count in system time units of 100 nanoseconds. Divide by ten million, or 1e7, to get seconds (there are 1e9 nanoseconds in a second, so there are 1e7 100-nanoseconds in a second).


100 나노초 단위라고 하니, 만약 이 함수의 반환 값이 1,000이라고 했을 때 밀리 초로 환산하려면 10,000으로 나누어 0.1ms를 계산할 수 있습니다.

주기적인 타이머 인터럽트에 영향을 안 받는지... 실제로 다음의 예제로 테스트할 수 있습니다.

#include "stdafx.h"
#include <Windows.h>
// #include <realtimeapiset.h>

#pragma comment(lib, "winmm.lib")

typedef VOID (WINAPI *FuncQueryInterruptTimePrecise)(_Out_ PULONGLONG lpInterruptTimePrecise);

int main()
{
    int count = 0;

    HMODULE hModule = ::LoadLibrary(L"KernelBase.dll");

    FuncQueryInterruptTimePrecise func_QueryInterruptTimePrecise = 
        (FuncQueryInterruptTimePrecise)::GetProcAddress(hModule, "QueryInterruptTimePrecise");

    if (func_QueryInterruptTimePrecise == nullptr)
    {
        printf("Not a Windows 10 PC\n");
        return 0;
    }

    __int64 currentTime;
    __int64 gap[1000];

    count = -1;
    int maxCount = 100;
    __int64 diff = 0;

    printf("QueryInterruptTimePrecise\n");
    while (count ++ < maxCount)
    {
        func_QueryInterruptTimePrecise((PULONGLONG)&currentTime);
        gap[count] = currentTime;
        printf("%I64d\n", currentTime);
    }

    currentTime = gap[0];
    diff = 0;
    for (int i = 1; i < maxCount; i++)
    {
        diff = gap[i] - currentTime;
        printf("%I64d, %0.4f\n", diff, diff / 10000.0);
        currentTime = gap[i];
    }

    return 0;
}

while 반복문에서 QueryInterruptTimePrecise 함수로 시간 값을 보관한 그 간격을 출력한 결과는 다음과 같습니다.

2294, 0.2294
2612, 0.2612
2514, 0.2514
2473, 0.2473
2463, 0.2463
2499, 0.2499
2461, 0.2461
2445, 0.2445
3450, 0.3450
2648, 0.2648
2508, 0.2508
2436, 0.2436
2421, 0.2421
2424, 0.2424
2421, 0.2421
2449, 0.2449
2418, 0.2418
2415, 0.2415
2397, 0.2397
...[생략]...

timeBeginPeriod + timeGetTime의 조합도 1ms 단위의 변화만 감지할 수 있었던 것에 비하면, 타이머 장치에 직접 접근하는 덕분에 정밀도는 훨씬 높아졌습니다.

그런데, 왜 이 좋은 것을 그동안 제공하지 않았던 것일까요? 제 생각이지만, 윈도우 PC 환경에서 1ms 미만의 정밀도를 요구하는 작업이 그다지 크게 중요하다고 생각지는 않았던 것이 아닌가 싶습니다. 그 외에 또 하나 이유라면, 사실 QueryInterruptTimePrecise는 타이머 디바이스로부터 직접 값을 읽어오기 때문에 호출 시간이 timeGetTime에 비해 더 느리다는 단점이 있습니다. 즉, 시간 정밀도를 높이려고 호출한 API 자체가 시간이 더 걸려 버리는 상황이 발생하는 것입니다.




이와 유사한 함수의 이름으로 QueryInterruptTime이 있는데 역시 Windows 10부터 제공됩니다. 이 함수는 timeGetTime과 동작 방식은 유사하나 대신 값이 64비트 변수에 담겨있고 100ns 단위의 시간 값을 제공합니다.

실제로 기본 타이머 설정인 15.625ms로 테스트를 해보면,

#include "stdafx.h"
#include <Windows.h>
// #include <realtimeapiset.h>

#pragma comment(lib, "winmm.lib")

typedef VOID (WINAPI *FuncQueryInterruptTime)(_Out_ PULONGLONG lpInterruptTime);

int main()
{
    int count = 0;

    HMODULE hModule = ::LoadLibrary(L"KernelBase.dll");

    FuncQueryInterruptTime func_QueryInterruptTime =
        (FuncQueryInterruptTime)::GetProcAddress(hModule, "QueryInterruptTime");

    if (func_QueryInterruptTime == nullptr)
    {
        printf("Not a Windows 10 PC\n");
        return 0;
    }

    __int64 currentTime;
    __int64 gap[1000];

    count = -1;
    int maxCount = 100;
    __int64 diff = 0;

    printf("QueryInterruptTime\n");
    while (count++ < mxunt)
    {
        func_QueryInterruptTime((PULONGLONG)&curentTime);
        gap[count] = currentTime;
        printf("%I64d\n", currentTime);
    }

    currentTime = gap[0];
    diff = 0;
    for (int i = 1; i < maxCount; i++)
    {
        diff = gap[i] - currentTime;
        printf("%I64d, %0.4f\n", diff, diff / 10000.0);
        currentTime = gap[i];
    }

    return 0;
}

출력된 시간 간격은 GetTickCount 때의 결과와 유사하게 약 15.625ms 간격으로 변화가 발생합니다.

0, 0.0000
...[생략: 수십 번 반복]...
156319, 15.6319
...[생략]...

물론, 위의 소스 코드에서 timeBeginPeriod(1) 코드를 한 번 호출해 주면 QueryInterruptTime은 1ms 단위로 변합니다.

(첨부 파일은 이 글의 소스 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 11/14/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 46  47  48  49  50  51  52  53  54  55  56  57  [58]  59  60  ...
NoWriterDateCnt.TitleFile(s)
12170정성태3/6/20209449오류 유형: 599. "Docker Desktop is switching..." 메시지와 DockerDesktopVM CPU 소비 현상
12169정성태3/5/202011480개발 환경 구성: 473. Windows nanoserver에 대한 docker pull의 태그 사용 [1]
12168정성태3/5/202012144개발 환경 구성: 472. 윈도우 환경에서의 dockerd.exe("Docker Engine" 서비스)가 Linux의 것과 다른 점
12167정성태3/5/202011397개발 환경 구성: 471. C# - 닷넷 응용 프로그램에서 DB2 Express-C 데이터베이스 사용 (3) - ibmcom/db2express-c 컨테이너 사용
12166정성태3/4/202011067개발 환경 구성: 470. Windows Server 컨테이너 - DockerMsftProvider 모듈을 이용한 docker 설치
12165정성태3/2/202010730.NET Framework: 900. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 네 번째 이야기(Monitor.Enter 후킹)파일 다운로드1
12164정성태2/29/202011601오류 유형: 598. Surface Pro 6 - Windows Hello Face Software Device가 인식이 안 되는 문제
12163정성태2/27/202010011.NET Framework: 899. 익명 함수를 가리키는 delegate 필드에 대한 직렬화 문제
12162정성태2/26/202012768디버깅 기술: 166. C#에서 만든 COM 객체를 C/C++로 P/Invoke Interop 시 메모리 누수(Memory Leak) 발생 [6]파일 다운로드2
12161정성태2/26/20209458오류 유형: 597. manifest - The value "x64" of attribute "processorArchitecture" in element "assemblyIdentity" is invalid.
12160정성태2/26/202010140개발 환경 구성: 469. Reg-free COM 개체 사용을 위한 manifest 파일 생성 도구 - COMRegFreeManifest
12159정성태2/26/20208350오류 유형: 596. Visual Studio - The project needs to include ATL support
12158정성태2/25/202010149디버깅 기술: 165. C# - Marshal.GetIUnknownForObject/GetIDispatchForObject 사용 시 메모리 누수(Memory Leak) 발생파일 다운로드1
12157정성태2/25/20209996디버깅 기술: 164. C# - Marshal.GetNativeVariantForObject 사용 시 메모리 누수(Memory Leak) 발생 및 해결 방법파일 다운로드1
12156정성태2/25/20209366오류 유형: 595. LINK : warning LNK4098: defaultlib 'nafxcw.lib' conflicts with use of other libs; use /NODEFAULTLIB:library
12155정성태2/25/20208668오류 유형: 594. Warning NU1701 - This package may not be fully compatible with your project
12154정성태2/25/20208552오류 유형: 593. warning LNK4070: /OUT:... directive in .EXP differs from output filename
12153정성태2/23/202011186.NET Framework: 898. Trampoline을 이용한 후킹의 한계파일 다운로드1
12152정성태2/23/202010914.NET Framework: 897. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 세 번째 이야기(Trampoline 후킹)파일 다운로드1
12151정성태2/22/202011496.NET Framework: 896. C# - Win32 API를 Trampoline 기법을 이용해 C# 메서드로 가로채는 방법 - 두 번째 이야기 (원본 함수 호출)파일 다운로드1
12150정성태2/21/202011319.NET Framework: 895. C# - Win32 API를 Trampoline 기법을 이용해 C# 메서드로 가로채는 방법 [1]파일 다운로드1
12149정성태2/20/202011059.NET Framework: 894. eBEST C# XingAPI 래퍼 - 연속 조회 처리 방법 [1]
12148정성태2/19/202012237디버깅 기술: 163. x64 환경에서 구현하는 다양한 Trampoline 기법 [1]
12147정성태2/19/202010896디버깅 기술: 162. x86/x64의 기계어 코드 최대 길이
12146정성태2/18/202011166.NET Framework: 893. eBEST C# XingAPI 래퍼 - 로그인 처리파일 다운로드1
12145정성태2/18/202010403.NET Framework: 892. eBEST C# XingAPI 래퍼 - Sqlite 지원 추가파일 다운로드1
... 46  47  48  49  50  51  52  53  54  55  56  57  [58]  59  60  ...