Microsoft MVP성태의 닷넷 이야기
Windows: 269. GetSystemTimeAsFileTime과 GetSystemTimePreciseAsFileTime의 차이점 [링크 복사], [링크+제목 복사],
조회: 1600
글쓴 사람
정성태 (seongtaejeong at gmail.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 6개 있습니다.)
Windows: 120. 윈도우 운영체제의 시간 함수 (1) - GetTickCount와 timeGetTime의 차이점
; https://www.sysnet.pe.kr/2/0/11063

Windows: 121. 윈도우 운영체제의 시간 함수 (2) - Sleep 함수의 동작 방식
; https://www.sysnet.pe.kr/2/0/11065

Windows: 122. 윈도우 운영체제의 시간 함수 (3) - QueryInterruptTimePrecise, QueryInterruptTime 함수
; https://www.sysnet.pe.kr/2/0/11066

Windows: 123. 윈도우 운영체제의 시간 함수 (4) - RTC, TSC, PM Clock, HPET Timer
; https://www.sysnet.pe.kr/2/0/11067

Windows: 124. 윈도우 운영체제의 시간 함수 (5) - TSC(Time Stamp Counter)와 QueryPerformanceCounter
; https://www.sysnet.pe.kr/2/0/11068

Windows: 269. GetSystemTimeAsFileTime과 GetSystemTimePreciseAsFileTime의 차이점
; https://www.sysnet.pe.kr/2/0/13802




Windows - GetSystemTimeAsFileTime과 GetSystemTimePreciseAsFileTime의 차이점

우선, 이 차이점을 이해하려면 아래의 글을 먼저 읽어주시고. ^^

윈도우 운영체제의 시간 함수 (1) - GetTickCount와 timeGetTime의 차이점
; https://www.sysnet.pe.kr/2/0/11063

위의 글을 이해했다면 이제 GetSystemTimeAsFileTime의 동작 방식도 쉽게 알 수 있습니다.

GetSystemTimeAsFileTime function (sysinfoapi.h)
; https://learn.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getsystemtimeasfiletime

즉, GetSystemTimeAsFileTime은 timer interrupt가 tick을 업데이트하는 주기로 시간이 업데이트되는 것인데요, 따라서 다음과 같은 식으로 테스트해 보면,

#include <vector>
#include <Windows.h>

using namespace std;

ULONGLONG SubtractFileTime(const FILETIME& ftA, const FILETIME& ftB)
{
    ULARGE_INTEGER a, b;
    a.LowPart = ftA.dwLowDateTime;
    a.HighPart = ftA.dwHighDateTime;

    b.LowPart = ftB.dwLowDateTime;
    b.HighPart = ftB.dwHighDateTime;

    return (a.QuadPart - b.QuadPart);
}

int main()
{
    int count = 1000000;
    vector<FILETIME> ticks;

    for (int i = 0; i < count; i++)
    {
        FILETIME ft;
        GetSystemTimeAsFileTime(&ft);

        ticks.push_back(ft);
    }

    FILETIME oldTime = ticks[0];
    ULONGLONG elapsed;
    for (int i = 1; i < count; i++)
    {
        elapsed = SubtractFileTime(ticks[i], oldTime);
        oldTime = ticks[i];

        if (elapsed != 0)
        {
            printf("%lld\n", elapsed);
        }
    }
}

/* 출력 결과: Current timer interval" == 1ms인 경우
10049
9912
10000
10023
9990
9992
10069
9931
9990
10007
*/

대충, 10,000 범위로 값이 툭툭 튀고 있는데요, 저 값의 정확한 의미는 QueryPerformanceFrequency가 반환한 값이 있어야 해석이 가능합니다.

bool g_IsHighResolution = false;

__int64 GetQPCFreq()
{
    LARGE_INTEGER qpcRate;
    g_IsHighResolution = QueryPerformanceFrequency(&qpcRate); // 대개의 경우 g_IsHighResolution == true
    return qpcRate.QuadPart;
}

__int64 frequency = GetQPCFreq();
printf("QPC frequency: %lld\n", frequency); // 출력 결과: QPC frequency: 10000000

위의 결과에 따라 GetSystemTimeAsFileTime이 반환한 값의 1 단위는 1 / 10,000,000 초(0.1 마이크로 초, 100 나노 초)에 해당합니다. 따라서 10,000 주기로 값이 튀는 것은 1 / 1,000초, 즉 1ms 주기로 발생하는 timer interrupt마다 GetSystemTimeAsFileTime의 값이 바뀐다는 것을 의미합니다.

만약 timer interrupt 주기가 15.6ms인 경우라면, 약 156,000 단위로 값이 튀는 현상을 볼 수 있습니다.

결국 timer interrupt가 발생한 바로 그 순간에 100 나노 초 단위의 정밀도로 그 시간을 보관하게 되지만, 이후 1ms가 지나기까지는 그 값이 변경되지 않다가, 1ms가 지나서야 다시 그 시점의 시간을 100 나노 초 단위로 보여주는 식입니다.




GetSystemTimePreciseAsFileTime은, 예상할 수 있겠지만 Precise라는 단어가 들어간 것에서 좀 더 정밀한 시간을 나타낼 것이라고 예상할 수 있습니다.

GetSystemTimePreciseAsFileTime function (sysinfoapi.h)
; https://learn.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getsystemtimepreciseasfiletime

실제로, 위의 예제 코드를 GetSystemTimeAsFileTime을 호출하는 것만 GetSystemTimePreciseAsFileTime으로 바꿔 실행해 보면,

int main()
{
    int count = 10;
    vector<FILETIME> ticks;

    for (int i = 0; i < count; i++)
    {
        FILETIME ft;
        GetSystemTimePreciseAsFileTime(&ft);

        ticks.push_back(ft);
    }

    // ...[생략]...
}

/* 출력 결과: Current timer interval"의 설정과 무관하게!
3
2
1
2
1
1
1

대략 0.1us마다 값이 튀는 것을 볼 수 있습니다. 즉 timer interrupt가 발생하는 것과 무관하게 현재 시간을 100ns 단위의 정밀도로 반환하고 있는 것입니다.

이 함수는 Windows 8 / Windows Server 2012부터 구현하고 있는데요, 이게 어떻게 가능하게 된 것일까요? ^^ 일단 윈도우 소스코드가 없어 구체적으로 어떻게 구현돼 있는지는 알 수 없지만, 그냥 제 추측으로 적어보자면... ^^

아마도, timer interrupt가 발생하는 주기로 기존처럼 시간을 업데이트하고 있지만, 바로 그 시점의 rdtsc 값을 보관한 다음 이후 GetSystemTimePreciseAsFileTime을 호출할 때 rdtsc의 변화를 계산해 마지막 timer interrupt가 발생한 시점의 값과 더해 반환하는 식이... 아닐까 싶습니다.

물론, 그렇게 하면 요즘 CPU의 경우 GHz 주기로 시간 정밀도가 나올 수 있는데요, 하지만 근래의 Windows 운영체제는 그 값을 정규화시켜 100ns에 맞춰서 제공하고 있습니다.

아무튼, 1 ~ 15.6ms 정도의 정밀도로 상관없다면 GetSystemTimeAsFileTime을 사용하고, 그 이상의 정밀도가 필요하다면 (보통) 0.1us 정밀도를 갖는 GetSystemTimePreciseAsFileTime을 사용하면 됩니다. (주의할 사항이 있는데, 일부 시스템에서는 Precise 함수가 정상적인 값을 반환하지 않는 문제가 있으므로, GetSystemTimeAsFileTime으로 보완하는 코드가 필요합니다.)




참고로, QueryPerformanceFrequency 함수가 대개의 경우 10000000을 반환하지만 환경에 따라 다른 값을 반환하기도 합니다. 가령 예전에 질문하셨던 분도 그렇고, 아래의 글을 테스트할 때만 해도,

윈도우 운영체제의 시간 함수 (5) - TSC(Time Stamp Counter)와 QueryPerformanceCounter
; https://www.sysnet.pe.kr/2/0/11068

QueryPerformanceFrequency가 3328129를 반환했었는데요, 이 차이는 Windows 10 build 1809부터 바뀐 것이니 유의하시기 바랍니다.

Windows 10부터 바뀐 QueryPerformanceFrequency, QueryPerformanceCounter
; https://www.sysnet.pe.kr/2/0/13035





[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 11/7/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13838정성태12/4/2024632오류 유형: 935. Windbg - Breakpoint 0's offset expression evaluation failed.
13837정성태12/3/2024699디버깅 기술: 204. Windbg - 윈도우 핸들 테이블 (3) - Windows 10 이상인 경우
13836정성태12/3/2024922디버깅 기술: 203. Windbg - x64 가상 주소를 물리 주소로 변환 (페이지 크기가 2MB인 경우)
13835정성태12/2/2024985오류 유형: 934. Azure - rm: cannot remove '...': Directory not empty
13834정성태11/29/20241073Windows: 275. C# - CUI 애플리케이션과 Console 윈도우 (Windows 10 미만의 Classic Console 모드인 경우)파일 다운로드1
13833정성태11/29/20241077개발 환경 구성: 737. Azure Web App에서 Scale-out으로 늘어난 리눅스 인스턴스에 SSH 접속하는 방법
13832정성태11/27/20241110Windows: 274. Windows 7부터 도입한 conhost.exe
13831정성태11/27/2024977Linux: 111. eBPF - BPF_MAP_TYPE_PERF_EVENT_ARRAY, BPF_MAP_TYPE_RINGBUF에 대한 다양한 용어들
13830정성태11/25/20241069개발 환경 구성: 736. 파이썬 웹 앱을 Azure App Service에 배포하기
13829정성태11/25/20241026스크립트: 67. 파이썬 - Windows 버전에서 함께 설치되는 py.exe
13828정성태11/25/20241047개발 환경 구성: 735. Azure - 압축 파일을 이용한 web app 배포 시 디렉터리 구분이 안 되는 문제파일 다운로드1
13827정성태11/25/20241117Windows: 273. Windows 환경의 파일 압축 방법 (tar, Compress-Archive)
13826정성태11/21/20241174닷넷: 2313. C# - (비밀번호 등의) Console로부터 입력받을 때 문자열 출력 숨기기(echo 끄기)파일 다운로드1
13825정성태11/21/20241144Linux: 110. eBPF / bpf2go - BPF_RINGBUF_OUTPUT / BPF_MAP_TYPE_RINGBUF 사용법
13824정성태11/20/20241083Linux: 109. eBPF / bpf2go - BPF_PERF_OUTPUT / BPF_MAP_TYPE_PERF_EVENT_ARRAY 사용법
13823정성태11/20/20241084개발 환경 구성: 734. Ubuntu에 docker, kubernetes (k3s) 설치
13822정성태11/20/20241044개발 환경 구성: 733. Windbg - VirtualBox VM의 커널 디버거 연결 시 COM 포트가 없는 경우
13821정성태11/18/20241170Linux: 108. Linux와 Windows의 프로세스/스레드 ID 관리 방식
13820정성태11/18/20241127VS.NET IDE: 195. Visual C++ - C# 프로젝트처럼 CopyToOutputDirectory 항목을 추가하는 방법
13819정성태11/15/20241122Linux: 107. eBPF - libbpf CO-RE의 CONFIG_DEBUG_INFO_BTF 빌드 여부에 대한 의존성
13818정성태11/15/20241215Windows: 272. Windows 11 24H2 - sudo 추가
13817정성태11/14/20241100Linux: 106. eBPF / bpf2go - (BPF_MAP_TYPE_HASH) Map을 이용한 전역 변수 구현
13816정성태11/14/20241157닷넷: 2312. C#, C++ - Windows / Linux 환경의 Thread Name 설정파일 다운로드1
13815정성태11/13/20241100Linux: 105. eBPF - bpf2go에서 전역 변수 설정 방법
13814정성태11/13/20241214닷넷: 2311. C# - Windows / Linux 환경에서 Native Thread ID 가져오기파일 다운로드1
[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...