Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 14개 있습니다.)
.NET Framework: 292. RSACryptoServiceProvider의 공개키와 개인키 구분
; https://www.sysnet.pe.kr/2/0/1218

.NET Framework: 327. RSAParameters와 System.Numerics.BigInteger 이야기
; https://www.sysnet.pe.kr/2/0/1295

.NET Framework: 329. C# - Rabin-Miller 소수 생성방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자
; https://www.sysnet.pe.kr/2/0/1300

.NET Framework: 356. (공개키를 담은) 자바의 key 파일을 닷넷의 RSACryptoServiceProvider에서 사용하는 방법
; https://www.sysnet.pe.kr/2/0/1401

.NET Framework: 383. RSAParameters의 ToXmlString과 ExportParameters의 결과 비교
; https://www.sysnet.pe.kr/2/0/1491

.NET Framework: 565. C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자 - 두 번째 이야기
; https://www.sysnet.pe.kr/2/0/10925

.NET Framework: 566. openssl의 PKCS#1 PEM 개인키 파일을 .NET RSACryptoServiceProvider에서 사용하는 방법
; https://www.sysnet.pe.kr/2/0/10926

.NET Framework: 638. RSAParameters와 RSA
; https://www.sysnet.pe.kr/2/0/11140

.NET Framework: 1037. openssl의 PEM 개인키 파일을 .NET RSACryptoServiceProvider에서 사용하는 방법 (2)
; https://www.sysnet.pe.kr/2/0/12598

.NET Framework: 2093. C# - PKCS#8 PEM 파일을 이용한 RSA 개인키/공개키 설정 방법
; https://www.sysnet.pe.kr/2/0/13245

닷넷: 2297. C# - ssh-keygen으로 생성한 Public Key 파일 해석과 fingerprint 값(md5, sha256) 생성
; https://www.sysnet.pe.kr/2/0/13739

닷넷: 2297. C# - ssh-keygen으로 생성한 ecdsa 유형의 Public Key 파일 해석
; https://www.sysnet.pe.kr/2/0/13742

닷넷: 2300. C# - OpenSSH의 공개키 파일에 대한 "BEGIN OPENSSH PUBLIC KEY" / "END OPENSSH PUBLIC KEY" PEM 포맷
; https://www.sysnet.pe.kr/2/0/13747

닷넷: 2302. C# - ssh-keygen으로 생성한 Private Key와 Public Key 연동
; https://www.sysnet.pe.kr/2/0/13749




C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자 - 두 번째 이야기

예전에 올렸던 소스 코드를,

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자
; https://www.sysnet.pe.kr/2/0/1300

개선해 보았습니다. 일단, 저 글에 공개된 소스 코드의 Main을 무한 루프로 고치고 실행하면,

static void Main(string[] args)
{
    while (true)
    {
        FillRSA(5);
    }
}

예외가 발생할 수 있는데, 이는 이미 1편에서 글을 쓴데로 P 값보다 Q 값이 더 큰 경우에 해당합니다. 제가 웬일인지 그 부분을 주석처리했는데, 다음과 같이 주석을 해제해 주시면 됩니다.

if (q > p)
{
    BigInteger temp = q;
    q = p;
    p = temp;
}

그런데, 이렇게 해도 여전히 다음과 같은 예외가 발생합니다.

byte[] dataToEncrypt = ByteConverter.GetBytes("Data to Encrypt");
byte[] encryptedData;
byte[] decryptedData;

encryptedData = RSAEncrypt(dataToEncrypt, rsa.ExportParameters(false), false);
decryptedData = RSADecrypt(encryptedData, rsa.ExportParameters(true), false);

Console.WriteLine("Decrypted plaintext: {0}", ByteConverter.GetString(decryptedData));

System.ArgumentNullException was unhandled
  HResult=-2147467261
  Message=Array cannot be null.
Parameter name: bytes
  ParamName=bytes
  Source=mscorlib
  StackTrace:
       at System.Text.Encoding.GetString(Byte[] bytes)
       at producePrime.Program.FillRSA(Int32 certainty) in E:\...\producePrime\Program.cs:line 159
       at producePrime.Program.Main(String[] args) in E:\...\producePrime\Program.cs:line 16
  InnerException: 

결과는 null이지만, RSADecrypt에서 예외가 발생했기 때문에 decryptedData에 null이 들어간 것입니다. 결국 최초의 예외는 다음에서 발생합니다.

System.Security.Cryptography.CryptographicException: The parameter is incorrect.

   at System.Security.Cryptography.CryptographicException.ThrowCryptographicException(Int32 hr)
   at System.Security.Cryptography.RSACryptoServiceProvider.DecryptKey(SafeKeyHandle pKeyContext, Byte[] pbEncryptedKey,
 Int32 cbEncryptedKey, Boolean fOAEP, ObjectHandleOnStack ohRetDecryptedKey)
   at System.Security.Cryptography.RSACryptoServiceProvider.Decrypt(Byte[] rgb, Boolean fOAEP)
   at producePrime.Program.RSADecrypt(Byte[] DataToDecrypt, RSAParameters RSAKeyInfo, Boolean DoOAEPPadding) in E:\...\producePrime\Program.cs:line 309

이에 대한 원인이 재미있는데요. RSAParameters.Modulus의 첫 번째 바이트에 0이 들어갔기 때문입니다. 즉, P * Q의 값이 충분히 크지 않게 되면 발생하는 것인데, 가령 P와 Q의 값이 각각 64바이트 길이인데, 그 곱하기 값인 Modulus가 128바이트를 모두 채우지 않는 경우가 되면 (암호화 메서드인 Encrypt 호출은 통과하지만) 복호화 메서드인 Decrypt 호출 시 "The parameter is incorrect" 예외가 발생하는 것입니다.

따라서, 이런 조건을 갖는 P, Q의 키 값이 생성된 경우에는 그냥 버리고 다시 P, Q를 생성해야 합니다. 이렇게 해서 안정적인 버전의 소스 코드를 만들면 다음과 같습니다. ^^

using System;
using System.Collections.Generic;
using System.Text;
using System.Security.Cryptography;
using System.Numerics;
using System.Diagnostics;

namespace producePrime
{
    class Program
    {
        static void Main(string[] args)
        {
            while (true)
            {
                FillRSA(5);
            }
        }

        static void FillRSA(int certainty)
        {
            int modulusSize = 1024;
            int modulusByteSize = modulusSize / 8 / 2;
            RSAParameters rsaParam = new RSAParameters();

            // P, Q 값 생성하고,
            BigInteger p, q;

            Stopwatch st = new Stopwatch();
            st.Start();
            ProducePQ(modulusByteSize, out p, certainty);
            ProducePQ(modulusByteSize, out q, certainty);
            st.Stop();

            Console.WriteLine("Elapsed: " + st.ElapsedMilliseconds + "(ms)");

            if (q > p)
            {
                BigInteger temp = q;
                q = p;
                p = temp;
            }

            // N 값 구하고,
            BigInteger n = p * q;

            // E 값 생성하고,
            int publicExponent = 65537;

            // Φ 값 구하고,
            BigInteger rp = (p - 1) * (q - 1);

            // D 값 구하고,
            BigInteger d = GetExtendedGcd(publicExponent, rp).Item2;

            if (d < 0)
            {
                BigInteger tMultiplier = BigInteger.Min(publicExponent, rp);
                BigInteger tDivisor = BigInteger.Max(publicExponent, rp);

                d = tDivisor + d;
                Console.WriteLine("d < 0");
                Console.WriteLine();

                BigInteger dMod = BigInteger.Remainder(d * tMultiplier, tDivisor);

                if (dMod.IsOne == false)
                {
                    Console.WriteLine("[Failed] d * e mod rp == " + dMod);
                    Console.WriteLine();
                    return;
                }
            }

            // InverseQ 값 구하고,
            BigInteger inverseQ = GetExtendedGcd(q, p).Item2;

            if (inverseQ < 0)
            {
                BigInteger tMultiplier = BigInteger.Min(q, p);
                BigInteger tDivisor = BigInteger.Max(q, p);

                inverseQ = tDivisor + inverseQ;
                Console.WriteLine("inverseQ < 0");
                Console.WriteLine();

                BigInteger qMod = BigInteger.Remainder(inverseQ * tMultiplier, tDivisor);
                if (qMod.IsOne == false)
                {
                    Console.WriteLine("[Failed] inverseQ * q mod p == " + qMod);
                    Console.WriteLine();
                    return;
                }
            }

            // DP, DQ 값 구하고,
            BigInteger dp = BigInteger.Remainder(d, (p - 1));
            BigInteger dq = BigInteger.Remainder(d, (q - 1));

            ToBigEndian(p, ref rsaParam.P, modulusByteSize);
            ToBigEndian(q, ref rsaParam.Q, modulusByteSize);
            ToBigEndian(n, ref rsaParam.Modulus, modulusByteSize * 2);

            if (rsaParam.Modulus[0] == 0) 
            {
                return; 
            }  

            ToBigEndian(publicExponent, ref rsaParam.Exponent, 3);
            ToBigEndian(d, ref rsaParam.D, modulusByteSize * 2);
            ToBigEndian(dp, ref rsaParam.DP, modulusByteSize);
            ToBigEndian(dq, ref rsaParam.DQ, modulusByteSize);
            ToBigEndian(inverseQ, ref rsaParam.InverseQ, modulusByteSize);

            RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();
            rsa.ImportParameters(rsaParam);

            // RSACryptoServiceProvider로 암/복호화 테스트
            UnicodeEncoding ByteConverter = new UnicodeEncoding();

            byte[] dataToEncrypt = ByteConverter.GetBytes("Data to Encrypt");
            byte[] encryptedData;
            byte[] decryptedData;

            encryptedData = RSAEncrypt(dataToEncrypt, rsa.ExportParameters(false), false);
            decryptedData = RSADecrypt(encryptedData, rsa.ExportParameters(true), false);

            Console.WriteLine("Decrypted plaintext: {0}", ByteConverter.GetString(decryptedData));
        }

        private static void ToBigEndian(BigInteger bytes, ref byte[] target, int byteSize)
        {
            List<byte> list = new List<byte>();
            list.AddRange(bytes.ToByteArray());

            for (int i = list.Count; i < byteSize; i ++)
            {
                list.Add(0);
            }

            list.Reverse();

            target = new byte[list.Count];

            Array.Copy(list.ToArray(), target, list.Count);
        }

        private static Tuple<BigInteger, BigInteger> GetExtendedGcd(BigInteger num1, BigInteger num2)
        {
            if (num2 > num1)
            {
                return GetExtendedGcd(num2, num1);
            }

            BigInteger x = 0;
            BigInteger lastx = 1;
            BigInteger y = 1;
            BigInteger lasty = 0;

            BigInteger quotient = 0;

            BigInteger tempNum2, tempx, tempy;

            while (num2 != 0)
            {
                quotient = num1 / num2;

                tempNum2 = num2;
                num2 = num1 % num2;
                num1 = tempNum2;

                tempx = lastx - quotient * x;
                lastx = x;
                x = tempx;

                tempy = lasty - quotient * y;
                lasty = y;
                y = tempy;
            }

            return new Tuple<BigInteger, BigInteger>(lastx, lasty);
        }

        private static void ProducePQ(int bytes, out BigInteger p, int certainty)
        {
            Random rand = new Random();
            byte[] pRand = new byte[bytes];

            while (true)
            {
                rand.NextBytes(pRand);
                p = new BigInteger(pRand);

                if (p.IsProbablePrime(certainty) == true)
                {
                    break;
                }
            }
        }

        public static bool IsPrime(BigInteger candidate)
        {
            if ((candidate & 1) == 0)
            {
                if (candidate == 2)
                {
                    return true;
                }
                else
                {
                    return false;
                }
            }

            for (BigInteger i = 3; (i * i) <= candidate; i += 2)
            {
                if ((candidate % i) == 0)
                {
                    return false;
                }
            }

            return candidate != 1;
        }

        static public byte[] RSAEncrypt(byte[] DataToEncrypt, RSAParameters RSAKeyInfo, bool DoOAEPPadding)
        {
            try
            {
                byte[] encryptedData;
                using (RSACryptoServiceProvider RSA = new RSACryptoServiceProvider())
                {
                    RSA.ImportParameters(RSAKeyInfo);
                    encryptedData = RSA.Encrypt(DataToEncrypt, DoOAEPPadding);
                }
                return encryptedData;
            }
            catch (CryptographicException e)
            {
                Console.WriteLine(e.Message);

                return null;
            }

        }

        static public byte[] RSADecrypt(byte[] DataToDecrypt, RSAParameters RSAKeyInfo, bool DoOAEPPadding)
        {
            try
            {
                byte[] decryptedData;
                using (RSACryptoServiceProvider RSA = new RSACryptoServiceProvider())
                {
                    RSA.ImportParameters(RSAKeyInfo);
                    decryptedData = RSA.Decrypt(DataToDecrypt, DoOAEPPadding);
                }
                return decryptedData;
            }
            catch (CryptographicException e)
            {
                Console.WriteLine(e.ToString());

                return null;
            }

        }

    }
}

(첨부된 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 6/26/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  [5]  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13818정성태11/15/20245264Windows: 272. Windows 11 24H2 - sudo 추가
13817정성태11/14/20244926Linux: 106. eBPF / bpf2go - (BPF_MAP_TYPE_HASH) Map을 이용한 전역 변수 구현
13816정성태11/14/20245386닷넷: 2312. C#, C++ - Windows / Linux 환경의 Thread Name 설정파일 다운로드1
13815정성태11/13/20244809Linux: 105. eBPF - bpf2go에서 전역 변수 설정 방법
13814정성태11/13/20245278닷넷: 2311. C# - Windows / Linux 환경에서 Native Thread ID 가져오기파일 다운로드1
13813정성태11/12/20245028닷넷: 2310. .NET의 Rune 타입과 emoji 표현파일 다운로드1
13812정성태11/11/20245248오류 유형: 933. Active Directory - The forest functional level is not supported.
13811정성태11/11/20244848Linux: 104. Linux - COLUMNS 환경변수가 언제나 80으로 설정되는 환경
13810정성태11/10/20245374Linux: 103. eBPF (bpf2go) - Tracepoint를 이용한 트레이스 (BPF_PROG_TYPE_TRACEPOINT)
13809정성태11/10/20245252Windows: 271. 윈도우 서버 2025 마이그레이션
13808정성태11/9/20245256오류 유형: 932. Linux - 커널 업그레이드 후 "error: bad shim signature" 오류 발생
13807정성태11/9/20244983Linux: 102. Linux - 커널 이미지 파일 서명 (Ubuntu 환경)
13806정성태11/8/20244901Windows: 270. 어댑터 상세 정보(Network Connection Details) 창의 내용이 비어 있는 경우
13805정성태11/8/20244736오류 유형: 931. Active Directory의 adprep 또는 복제가 안 되는 경우
13804정성태11/7/20245366Linux: 101. eBPF 함수의 인자를 다루는 방법
13803정성태11/7/20245319닷넷: 2309. C# - .NET Core에서 바뀐 DateTime.Ticks의 정밀도
13802정성태11/6/20245693Windows: 269. GetSystemTimeAsFileTime과 GetSystemTimePreciseAsFileTime의 차이점파일 다운로드1
13801정성태11/5/20245481Linux: 100. eBPF의 2가지 방식 - libbcc와 libbpf(CO-RE)
13800정성태11/3/20246321닷넷: 2308. C# - ICU 라이브러리를 활용한 문자열의 대소문자 변환 [2]파일 다운로드1
13799정성태11/2/20244906개발 환경 구성: 732. 모바일 웹 브라우저에서 유니코드 문자가 표시되지 않는 경우
13798정성태11/2/20245505개발 환경 구성: 731. 유니코드 - 출력 예시 및 폰트 찾기
13797정성태11/1/20245491C/C++: 185. C++ - 문자열의 대소문자를 변환하는 transform + std::tolower/toupper 방식의 문제점파일 다운로드1
13796정성태10/31/20245381C/C++: 184. C++ - ICU dll을 이용하는 예제 코드 (Windows)파일 다운로드1
13795정성태10/31/20245163Windows: 268. Windows - 리눅스 환경처럼 공백으로 끝나는 프롬프트 만들기
13794정성태10/30/20245261닷넷: 2307. C# - 윈도우에서 한글(및 유니코드)을 포함한 콘솔 프로그램을 컴파일 및 실행하는 방법
13793정성태10/28/20245134C/C++: 183. C++ - 윈도우에서 한글(및 유니코드)을 포함한 콘솔 프로그램을 컴파일 및 실행하는 방법
1  2  3  4  [5]  6  7  8  9  10  11  12  13  14  15  ...