Microsoft MVP성태의 닷넷 이야기
.NET Framework: 638. RSAParameters와 RSA [링크 복사], [링크+제목 복사],
조회: 16730
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)
(시리즈 글이 14개 있습니다.)
.NET Framework: 292. RSACryptoServiceProvider의 공개키와 개인키 구분
; https://www.sysnet.pe.kr/2/0/1218

.NET Framework: 327. RSAParameters와 System.Numerics.BigInteger 이야기
; https://www.sysnet.pe.kr/2/0/1295

.NET Framework: 329. C# - Rabin-Miller 소수 생성방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자
; https://www.sysnet.pe.kr/2/0/1300

.NET Framework: 356. (공개키를 담은) 자바의 key 파일을 닷넷의 RSACryptoServiceProvider에서 사용하는 방법
; https://www.sysnet.pe.kr/2/0/1401

.NET Framework: 383. RSAParameters의 ToXmlString과 ExportParameters의 결과 비교
; https://www.sysnet.pe.kr/2/0/1491

.NET Framework: 565. C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자 - 두 번째 이야기
; https://www.sysnet.pe.kr/2/0/10925

.NET Framework: 566. openssl의 PKCS#1 PEM 개인키 파일을 .NET RSACryptoServiceProvider에서 사용하는 방법
; https://www.sysnet.pe.kr/2/0/10926

.NET Framework: 638. RSAParameters와 RSA
; https://www.sysnet.pe.kr/2/0/11140

.NET Framework: 1037. openssl의 PEM 개인키 파일을 .NET RSACryptoServiceProvider에서 사용하는 방법 (2)
; https://www.sysnet.pe.kr/2/0/12598

.NET Framework: 2093. C# - PKCS#8 PEM 파일을 이용한 RSA 개인키/공개키 설정 방법
; https://www.sysnet.pe.kr/2/0/13245

닷넷: 2297. C# - ssh-keygen으로 생성한 Public Key 파일 해석과 fingerprint 값(md5, sha256) 생성
; https://www.sysnet.pe.kr/2/0/13739

닷넷: 2297. C# - ssh-keygen으로 생성한 ecdsa 유형의 Public Key 파일 해석
; https://www.sysnet.pe.kr/2/0/13742

닷넷: 2300. C# - OpenSSH의 공개키 파일에 대한 "BEGIN OPENSSH PUBLIC KEY" / "END OPENSSH PUBLIC KEY" PEM 포맷
; https://www.sysnet.pe.kr/2/0/13747

닷넷: 2302. C# - ssh-keygen으로 생성한 Private Key와 Public Key 연동
; https://www.sysnet.pe.kr/2/0/13749




RSAParameters와 RSA

RSAParameters 관련해서 쓴 글이 있었는데,

RSAParameters와 System.Numerics.BigInteger 이야기
; https://www.sysnet.pe.kr/2/0/1295

소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자 - 두 번째 이야기
; https://www.sysnet.pe.kr/2/0/10925

이번엔 원론적인 RSA 암호화에 대입해 RSAParameters를 설명해 보겠습니다.

우선, RSA 암호화를 정리하면 다음과 같습니다.

p와 q라고 하는 2개의 서로 다른 소수(p != q)를 고르고 
N = pq라고 하면
(p - 1)(q - 1)과 서로 소인 e를 찾는다.

[암호화]
그럼, xe mod N은 집합 {0, 1, ..., N - 1}에서 전단사 함수가 된다. 
즉, "y = xe mod N"으로 계산할 수 있다.

[복호화]
d를 e mod (p - 1)(q - 1)의 역이라고 할 때, 그럼 y 집합의 모든 원소에 대해,
"yd ≡ x mod N"으로 복원할 수 있다.

그러니까, 암호화를 위해 공개키로써 e 값과 N 값을 배포하면 됩니다. 반대로 복호화를 위해서는 d와 N 값을 알아야 하는 것입니다. 따라서, (e, N) 쌍이 공개키가 되고 (d, N) 쌍이 개인키가 됩니다. 개인키 중에 N 값은 공개키에 포함된 것과 같은 숫자입니다. 그렇다면 당연히 d 값은 e와 N만으로는 구하는 것이 매우 어려워야 합니다. 만약 구하고 싶다면 배포된 N값을 인수 분해(N = pq)해 소수를 찾아내야 하는데, 문제는? (1024 키 길이의 RSA인 경우) 128 바이트가 표현하는 큰 수를 인수 분해하는 것이 만만치 않다는 것입니다.

이를 RSAParameters 구조체에서 찾아보면, e 값은 Exponent 필드에, N 값은 Modulus 필드에 해당합니다. 반면, d 값은 D(the private exponent) 필드에 담겨 있습니다. 이에 비춰 예전 글을 하나 보면,

RSACryptoServiceProvider의 공개키와 개인키 구분
; https://www.sysnet.pe.kr/2/0/1218

공개 키를 다음과 같이 추출했었습니다.

RSAParameters privateKey = RSA.Create().ExportParameters(true);

RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();
rsa.ImportParameters(publicKey);
string publicKeyText = rsa.ToXmlString(false);

publicKeyText 값:

<RSAKeyValue><Modulus>3GujGHHw7hecMfuyU9W1mkAA1FqOolhSaKl8jF4wuJW26rwr7P/QjljwD
+Tyav2DVDJ0tW93VgzZV3rjMq2FDpjyEUOOMfiGptSeYtQica+6rLb5g+n0ZYh8lI7VGwiy4/OTAHc/
OBBmb8VNvG6yKwxeRcX2v5mrkjHjQcXMoc8=</Modulus><Exponent>AQAB</Exponent></RSAKeyValue>

반면 개인키는 이렇게 출력되는데요.

RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();
rsa.ImportParameters(privateKey);
string privateKeyText = rsa.ToXmlString(true);

privateKeyText 값:

<RSAKeyValue><Modulus>3GujGHHw7hecMfuyU9W1mkAA1FqOolhSaKl8jF4wuJW26rwr7P/QjljwD
+Tyav2DVDJ0tW93VgzZV3rjMq2FDpjyEUOOMfiGptSeYtQica+6rLb5g+n0ZYh8lI7VGwiy4/OTAHc/
OBBmb8VNvG6yKwxeRcX2v5mrkjHjQcXMoc8=</Modulus><Exponent>AQAB</Exponent><P>+BTv/
DqzhEecQqJ7PT4bWQWDzCpr6/itZtyaN1cqi9V+c5wmDKc/szB2mGTVeUJ5NuPIixtwcL4yoeQr26aV1w==</
P><Q>43SuMl9XyVjXw/Vvvgq5s3LR0oVzQpw5YcaWHgHWCwIF6+kTdtwsgaL4e3QjCq9dxPPJm0DkwAIndRGwvS9kyQ==</
Q><DP>Jyy/PNhUMsZQIaGgzmn5TZR2XI4yXp/1WfHqFGUaXdyHzF/TDlp2z6gOgkAiCbT6iTVtHLJnjhYqzq/GUTg8Hw==</
DP><DQ>1bjxZYuI5TyBoTOhx6Q0UZV16qZSYyiAEouSyqdXBAjmn4DmNS009Kq5aOb7djLJnSKlMSiMyI49nRb+RwWdYQ==</
DQ><InverseQ>HIWjouZtBwUJqg6VCxrXQBvpd+3OdLqx8ScGR1tpGVxT9MijkVlmXbkEe7cYFZlw7iToEBfQrcmy6AWEpXl1NA==</
InverseQ><D>vAZxpSulK2Umj5i2oT8fYAqS6pKpM6GGAtP5c7/xbbQAyjJkghIidRs3BUf25v
+E5PD5j8AbG2Nwj2g7oQJWCe0UyX6pWsbUAaiv6dIop664q5UDVSulJXlAV3eV/vT6/ohMTFej7h1LQ/8crPd2wv8p+NYAIh+H719A/NqjOTE=</
D></RSAKeyValue>

엄밀히 privateKeyText에서 복호화를 위해 필요한 값은 Modulus와 D에 불과합니다.

실제로 이 값들을 직접 이용해 RSACryptoServiceProvider를 이용하지 않고도 암호화/복호화하는 것이 가능합니다. 일례로, "Data to Encrypt"라는 문자열을 암호화하고 싶다면 바이트 배열로 변환 후 BigInteger로 바꾼 다음,

UnicodeEncoding ByteConverter = new UnicodeEncoding();
byte[] dataToEncrypt = ByteConverter.GetBytes("Data to Encrypt");
BigInteger number = new BigInteger(dataToEncrypt);

Console.WriteLine(number); // 출력: 3127399888276619439107762246314845964137293412656710151378761118974020

exponent와 N 값을 이용해 이렇게 암호화할 수 있고,

BigInteger encrypted = BigInteger.ModPow(number, e, N);
Console.WriteLine(encrypted);

// 출력: 17395012284671690331469191953128354963389909320520913288321240451973450181637415031859771333733959539995952698989931309312338160833671182121730122489011962840169592997686420052905535013433395118865952789320910563666726251873306583084617071466168201451558024425187394731287569869070864965491190889757112753737

이 값을 그대로 d와 N으로 연산을 해주면 복호화가 됩니다.

BigInteger decrypted = BigInteger.ModPow(encrypted, d, N);
Console.WriteLine(decrypted); // 출력은 number 값과 동일하게 3127399888276619439107762246314845964137293412656710151378761118974020

물론, 이렇게 암호화한 encrypted 값과 실제로 RSACryptoServiceProvider가 출력한 값은 패딩 여부 등의 이유로 다릅니다.

(첨부 파일은 "소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자 - 두 번째 이야기" 글의 코드를 기반으로 이 글의 예제를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/23/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13838정성태12/4/2024853오류 유형: 935. Windbg - Breakpoint 0's offset expression evaluation failed.
13837정성태12/3/2024995디버깅 기술: 204. Windbg - 윈도우 핸들 테이블 (3) - Windows 10 이상인 경우
13836정성태12/3/20241058디버깅 기술: 203. Windbg - x64 가상 주소를 물리 주소로 변환 (페이지 크기가 2MB인 경우)
13835정성태12/2/20241019오류 유형: 934. Azure - rm: cannot remove '...': Directory not empty
13834정성태11/29/20241146Windows: 275. C# - CUI 애플리케이션과 Console 윈도우 (Windows 10 미만의 Classic Console 모드인 경우)파일 다운로드1
13833정성태11/29/20241121개발 환경 구성: 737. Azure Web App에서 Scale-out으로 늘어난 리눅스 인스턴스에 SSH 접속하는 방법
13832정성태11/27/20241154Windows: 274. Windows 7부터 도입한 conhost.exe
13831정성태11/27/20241003Linux: 111. eBPF - BPF_MAP_TYPE_PERF_EVENT_ARRAY, BPF_MAP_TYPE_RINGBUF에 대한 다양한 용어들
13830정성태11/25/20241100개발 환경 구성: 736. 파이썬 웹 앱을 Azure App Service에 배포하기
13829정성태11/25/20241033스크립트: 67. 파이썬 - Windows 버전에서 함께 설치되는 py.exe
13828정성태11/25/20241052개발 환경 구성: 735. Azure - 압축 파일을 이용한 web app 배포 시 디렉터리 구분이 안 되는 문제파일 다운로드1
13827정성태11/25/20241139Windows: 273. Windows 환경의 파일 압축 방법 (tar, Compress-Archive)
13826정성태11/21/20241220닷넷: 2313. C# - (비밀번호 등의) Console로부터 입력받을 때 문자열 출력 숨기기(echo 끄기)파일 다운로드1
13825정성태11/21/20241182Linux: 110. eBPF / bpf2go - BPF_RINGBUF_OUTPUT / BPF_MAP_TYPE_RINGBUF 사용법
13824정성태11/20/20241147Linux: 109. eBPF / bpf2go - BPF_PERF_OUTPUT / BPF_MAP_TYPE_PERF_EVENT_ARRAY 사용법
13823정성태11/20/20241110개발 환경 구성: 734. Ubuntu에 docker, kubernetes (k3s) 설치
13822정성태11/20/20241079개발 환경 구성: 733. Windbg - VirtualBox VM의 커널 디버거 연결 시 COM 포트가 없는 경우
13821정성태11/18/20241238Linux: 108. Linux와 Windows의 프로세스/스레드 ID 관리 방식
13820정성태11/18/20241237VS.NET IDE: 195. Visual C++ - C# 프로젝트처럼 CopyToOutputDirectory 항목을 추가하는 방법
13819정성태11/15/20241270Linux: 107. eBPF - libbpf CO-RE의 CONFIG_DEBUG_INFO_BTF 빌드 여부에 대한 의존성
13818정성태11/15/20241382Windows: 272. Windows 11 24H2 - sudo 추가
13817정성태11/14/20241227Linux: 106. eBPF / bpf2go - (BPF_MAP_TYPE_HASH) Map을 이용한 전역 변수 구현
13816정성태11/14/20241269닷넷: 2312. C#, C++ - Windows / Linux 환경의 Thread Name 설정파일 다운로드1
13815정성태11/13/20241157Linux: 105. eBPF - bpf2go에서 전역 변수 설정 방법
13814정성태11/13/20241234닷넷: 2311. C# - Windows / Linux 환경에서 Native Thread ID 가져오기파일 다운로드1
[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...