Microsoft MVP성태의 닷넷 이야기
Math: 17. C# - 복소수 타입의 승수를 지원하는 Power 메서드 [링크 복사], [링크+제목 복사],
조회: 24571
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

C# - 복소수 타입의 승수를 지원하는 Power 메서드

Math.PI를 오일러 공식에 대입하면 다음의 식을 얻게 됩니다.

eπi + 1 = 0;

그런데, 저 값을 실제로 코드로 구현하려면 어떻게 해야 할까요? 직관적인 코드로는 다음과 같이 작성해야 하는데,

Complex i = new Complex(0, 1);

double negOne = Math.Pow(Math.E, (Math.PI * i)); // 컴파일 에러!

애석하게도 닷넷 BCL에 기본 제공되는 Math.Pow 메서드는 복소수 타입의 제곱을 지원하지 않기 때문에 컴파일 오류가 발생합니다.

다행히 검색해 보면, Math.NET 라이브러리에 구현된 Complex32 타입은 복소수 타입의 제곱 함수를 제공해 줍니다.

Math.NET Numerics 3.11.1 
; https://www.nuget.org/packages/MathNet.Numerics/

Math.NET은 Nuget으로도 제공하기 때문에 다음과 같이 참조 추가를 해주고,

Install-Package MathNet.Numerics 

Complex32 타입에서 제공하는 Power 메서드를 사용해 복소수 승수를 사용해 주면 됩니다. 이렇게!

Complex32 i = new Complex32(0, 1);
Complex32 e = new Complex32((float)Math.E, 0);
Complex32 pi = new Complex32((float)Math.PI, 0);

Complex32 negOne = e.Power(pi * i);

Console.WriteLine(negOne); // (-1, 1.509958E-07)




Complex32 타입의 소스 코드를 참조하면 당연히 System.Nuemrics의 Complex 타입에도 복소수를 받는 Pow 메서드를 구현하는 것이 가능합니다. 이를 위해 다음과 같은 도우미 함수를 Math.NET으로부터 복사해 가져오고,

static class Helper
{
    public static readonly Complex Zero = new Complex(0, 0);
    public static readonly Complex One = new Complex(1, 0);
    public static readonly Complex NaN = new Complex(double.NaN, double.NaN);

    public static bool IsReal(this Complex complex)
    {
        return (complex.Imaginary == 0.0);
    }

    public static bool IsZero(this Complex complex)
    {
        return ((complex.Real == 0.0) && (complex.Imaginary == 0.0));
    }

    public static bool IsRealNonNegative(this Complex complex)
    {
        return ((complex.Imaginary == 0.0) && (complex.Real >= 0.0));
    }

    public static Complex Power(this Complex src, Complex exponent)
    {
        if (src.IsZero())
        {
            if (exponent.IsZero())
            {
                return One;
            }

            if (exponent.Real > 0f)
            {
                return Zero;
            }

            if (exponent.Real >= 0f)
            {
                return NaN;
            }

            if (exponent.Imaginary != 0f)
            {
                return new Complex(double.PositiveInfinity, double.PositiveInfinity);
            }

            return new Complex(double.PositiveInfinity, 0f);
        }

        Complex complex = exponent * src.NaturalLogarithm();
        return complex.Exponential();
    }

    public static Complex NaturalLogarithm(this Complex src)
    {
        if (src.IsRealNonNegative())
        {
            return new Complex(Math.Log(src.Real), 0);
        }

        return new Complex(0.5 * (Math.Log(src.MagnitudeSquared())), src.Phase());
    }

    public static double MagnitudeSquared(this Complex src)
    {
        return ((src.Real * src.Real) + (src.Imaginary * src.Imaginary));
    }

    public static double Phase(this Complex src)
    {
        if ((src.Imaginary == 0f) && (src.Real < 0f))
        {
            return Math.PI;
        }

        return Math.Atan2(src.Imaginary, src.Real);
    }

    public static Complex Exponential(this Complex src)
    {
        double real = Math.Exp(src.Real);

        if (src.IsReal())
        {
            return new Complex(real, 0f);
        }

        return new Complex(real * (Math.Cos(src.Imaginary)),
                            real * (Math.Sin(src.Imaginary)));
    }
}

System.Numerics.Complex 타입을 이용해 Math.Pow 기능을 다음과 같이 구현할 수 있습니다.

Complex i = new Complex(0, 1);
Complex e = new Complex(Math.E, 0);

Complex negOne = e.Power(Math.PI * i);

Console.WriteLine(negOne); // (-1, 1.22460635382238E-16)

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/21/2016]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 106  [107]  108  109  110  111  112  113  114  115  116  117  118  119  120  ...
NoWriterDateCnt.TitleFile(s)
11282정성태8/26/201720368Math: 22. 행렬로 바라보는 피보나치 수열
11281정성태8/26/201722567.NET Framework: 677. Visual Studio 2017 - NuGet 패키지를 직접 참조하는 PackageReference 지원 [2]
11280정성태8/24/201720030디버깅 기술: 94. windbg - 풀 덤프에 포함된 모든 모듈을 파일로 저장하는 방법
11279정성태8/23/201731389.NET Framework: 676. C# Thread가 Running 상태인지 아는 방법
11278정성태8/23/201719825오류 유형: 417. TFS - Warning - Unable to refresh ... because you have a pending edit. [1]
11277정성태8/23/201720974오류 유형: 416. msbuild - error MSB4062: The "TransformXml" task could not be loaded from the assembly
11276정성태8/23/201724815.NET Framework: 675. C# - (파일) 확장자와 연결된 실행 파일 경로 찾기 [2]파일 다운로드1
11275정성태8/23/201734182개발 환경 구성: 323. Visual Studio 설치 없이 빌드 환경 구성 - Visual Studio 2017용 Build Tools [1]
11274정성태8/22/201720845.NET Framework: 674. Thread 타입의 Suspend/Resume/Join 사용 관련 예외 처리
11273정성태8/22/201722316오류 유형: 415. 윈도우 업데이트 에러 Error 0x80070643
11272정성태8/21/201726150VS.NET IDE: 120. 비주얼 스튜디오 2017 버전 15.3.1 - C# 7.1 공개 [2]
11271정성태8/19/201720059VS.NET IDE: 119. Visual Studio 2017에서 .NET Core 2.0 프로젝트 환경 구성하는 방법
11270정성태8/17/201732271.NET Framework: 673. C#에서 enum을 boxing 없이 int로 변환하기 [2]
11269정성태8/17/201722384디버깅 기술: 93. windbg - 풀 덤프에서 .NET 스레드의 상태를 알아내는 방법
11268정성태8/14/201722433디버깅 기술: 92. windbg - C# Monitor Lock을 획득하고 있는 스레드 찾는 방법
11267정성태8/10/201726098.NET Framework: 672. 모노 개발 환경
11266정성태8/10/201726233.NET Framework: 671. C# 6.0 이상의 소스 코드를 Visual Studio 설치 없이 명령행에서 컴파일하는 방법
11265정성태8/10/201754149기타: 66. 도서: 시작하세요! C# 7.1 프로그래밍: 기본 문법부터 실전 예제까지 [11]
11264정성태8/9/201725535오류 유형: 414. UWP app을 signtool.exe로 서명 시 0x8007000b 오류 발생
11263정성태8/9/201720862오류 유형: 413. The C# project "..." is targeting ".NETFramework, Version=v4.0", which is not installed on this machine. [3]
11262정성태8/5/201719437오류 유형: 412. windbg - SOS does not support the current target architecture. [3]
11261정성태8/4/201721882디버깅 기술: 91. windbg - 풀 덤프 파일로부터 강력한 이름의 어셈블리 추출 후 사용하는 방법
11260정성태8/3/201720369.NET Framework: 670. C# - 실행 파일로부터 공개키를 추출하는 방법
11259정성태8/2/201718917.NET Framework: 669. 지연 서명된 어셈블리를 sn.exe -Vr 등록 없이 사용하는 방법
11258정성태8/1/201720249.NET Framework: 668. 지연 서명된 DLL과 서명된 DLL의 차이점파일 다운로드1
11257정성태7/31/201719871.NET Framework: 667. bypassTrustedAppStrongNames 옵션 설명파일 다운로드1
... 106  [107]  108  109  110  111  112  113  114  115  116  117  118  119  120  ...