Microsoft MVP성태의 닷넷 이야기
Math: 17. C# - 복소수 타입의 승수를 지원하는 Power 메서드 [링크 복사], [링크+제목 복사],
조회: 23286
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

C# - 복소수 타입의 승수를 지원하는 Power 메서드

Math.PI를 오일러 공식에 대입하면 다음의 식을 얻게 됩니다.

eπi + 1 = 0;

그런데, 저 값을 실제로 코드로 구현하려면 어떻게 해야 할까요? 직관적인 코드로는 다음과 같이 작성해야 하는데,

Complex i = new Complex(0, 1);

double negOne = Math.Pow(Math.E, (Math.PI * i)); // 컴파일 에러!

애석하게도 닷넷 BCL에 기본 제공되는 Math.Pow 메서드는 복소수 타입의 제곱을 지원하지 않기 때문에 컴파일 오류가 발생합니다.

다행히 검색해 보면, Math.NET 라이브러리에 구현된 Complex32 타입은 복소수 타입의 제곱 함수를 제공해 줍니다.

Math.NET Numerics 3.11.1 
; https://www.nuget.org/packages/MathNet.Numerics/

Math.NET은 Nuget으로도 제공하기 때문에 다음과 같이 참조 추가를 해주고,

Install-Package MathNet.Numerics 

Complex32 타입에서 제공하는 Power 메서드를 사용해 복소수 승수를 사용해 주면 됩니다. 이렇게!

Complex32 i = new Complex32(0, 1);
Complex32 e = new Complex32((float)Math.E, 0);
Complex32 pi = new Complex32((float)Math.PI, 0);

Complex32 negOne = e.Power(pi * i);

Console.WriteLine(negOne); // (-1, 1.509958E-07)




Complex32 타입의 소스 코드를 참조하면 당연히 System.Nuemrics의 Complex 타입에도 복소수를 받는 Pow 메서드를 구현하는 것이 가능합니다. 이를 위해 다음과 같은 도우미 함수를 Math.NET으로부터 복사해 가져오고,

static class Helper
{
    public static readonly Complex Zero = new Complex(0, 0);
    public static readonly Complex One = new Complex(1, 0);
    public static readonly Complex NaN = new Complex(double.NaN, double.NaN);

    public static bool IsReal(this Complex complex)
    {
        return (complex.Imaginary == 0.0);
    }

    public static bool IsZero(this Complex complex)
    {
        return ((complex.Real == 0.0) && (complex.Imaginary == 0.0));
    }

    public static bool IsRealNonNegative(this Complex complex)
    {
        return ((complex.Imaginary == 0.0) && (complex.Real >= 0.0));
    }

    public static Complex Power(this Complex src, Complex exponent)
    {
        if (src.IsZero())
        {
            if (exponent.IsZero())
            {
                return One;
            }

            if (exponent.Real > 0f)
            {
                return Zero;
            }

            if (exponent.Real >= 0f)
            {
                return NaN;
            }

            if (exponent.Imaginary != 0f)
            {
                return new Complex(double.PositiveInfinity, double.PositiveInfinity);
            }

            return new Complex(double.PositiveInfinity, 0f);
        }

        Complex complex = exponent * src.NaturalLogarithm();
        return complex.Exponential();
    }

    public static Complex NaturalLogarithm(this Complex src)
    {
        if (src.IsRealNonNegative())
        {
            return new Complex(Math.Log(src.Real), 0);
        }

        return new Complex(0.5 * (Math.Log(src.MagnitudeSquared())), src.Phase());
    }

    public static double MagnitudeSquared(this Complex src)
    {
        return ((src.Real * src.Real) + (src.Imaginary * src.Imaginary));
    }

    public static double Phase(this Complex src)
    {
        if ((src.Imaginary == 0f) && (src.Real < 0f))
        {
            return Math.PI;
        }

        return Math.Atan2(src.Imaginary, src.Real);
    }

    public static Complex Exponential(this Complex src)
    {
        double real = Math.Exp(src.Real);

        if (src.IsReal())
        {
            return new Complex(real, 0f);
        }

        return new Complex(real * (Math.Cos(src.Imaginary)),
                            real * (Math.Sin(src.Imaginary)));
    }
}

System.Numerics.Complex 타입을 이용해 Math.Pow 기능을 다음과 같이 구현할 수 있습니다.

Complex i = new Complex(0, 1);
Complex e = new Complex(Math.E, 0);

Complex negOne = e.Power(Math.PI * i);

Console.WriteLine(negOne); // (-1, 1.22460635382238E-16)

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/21/2016]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 166  167  168  169  170  171  172  173  [174]  175  176  177  178  179  180  ...
NoWriterDateCnt.TitleFile(s)
653정성태1/29/200922004.NET Framework: 122. XML Serializer를 이용한 값 복사: 성능은 어떨까!파일 다운로드1
652정성태1/22/200922788.NET Framework: 121. WPF - PrintTicket provider failed to bind to printer.
651정성태1/20/200920088.NET Framework: 120. 타입이 다른 배열끼리의 변환
650정성태1/19/200931888COM 개체 관련: 21. C/C++ 프로젝트에 /clr 옵션 적용으로 인한 COM 개체 사용 오류
649정성태1/18/200929425Windows: 38. Q1U UMPC에 Windows 7 베타 설치하기
648정성태1/18/200928117Windows: 37. Windows PE를 USB 메모리에 적용
647정성태1/18/200938262Windows: 36. Windows PE ISO 이미지 만들기 [1]
646정성태1/18/200931244디버깅 기술: 23. COMPLUS_ZapDisable - JIT 최적화 코드 생성 제어 [1]
645정성태1/11/200930037Windows: 35. 서명되지 않은 드라이버 로딩 방법
644정성태1/11/200921114Windows: 34. VPC 설치 후기 [2]
643정성태1/10/200926515Windows: 33. Windows 7 베타와 VMA 충돌 [1]
642정성태1/8/200925253개발 환경 구성: 34. Sysinternals의 모든 툴을 한번에 업데이트 하는 방법 [1]
641정성태1/7/200922390기타: 27. D820 - A09 바이오스 업데이트 프로그램 패치 [2]
640정성태1/4/200924088Team Foundation Server: 29. ClickOnce 응용 프로그램 배포를 Team Build에 추가.
639정성태1/4/200922060Team Foundation Server: 28. PFX 코드 서명을 포함한 프로젝트의 팀 빌드 실패 - MSB4018
638정성태1/3/200925098.NET Framework: 119. WPF - 의존 속성 정의에서 XamlParseException 발생하는 예 [2]
637정성태1/1/200927318기타: 26. 2008년 인기 순위 정리
636정성태12/31/200822424.NET Framework: 118. 2진 검색을 이용한 리스트 정렬 삽입파일 다운로드1
635정성태12/29/200825073오류 유형: 66. 파일 암호화 오류 - Recovery policy configured for this system contains invalid recovery certificate
634정성태12/29/200839403기타: 25. 가상 키보드 관련 정리 [4]
633정성태12/20/200824868기타: 24. RMClock for x64 [2]
632정성태12/19/200833487기타: 23. D820 - 배터리 없이 바이오스 업데이트 방법 [2]파일 다운로드1
631정성태12/10/200842163VC++: 36. Detours 라이브러리를 이용한 Win32 API - Sleep 호출 가로채기 [3]
630정성태12/9/200822986.NET Framework: 117. WPF - TreeView에서 항목이 펼쳐질 때 Cursors.Wait 사용파일 다운로드1
629정성태12/7/200832147.NET Framework: 116. 소켓 연결 시간 제한
628정성태12/6/200821062.NET Framework: 115. Marshal 타입 관련 2가지 자원 해제 메서드파일 다운로드1
... 166  167  168  169  170  171  172  173  [174]  175  176  177  178  179  180  ...