Microsoft MVP성태의 닷넷 이야기
Math: 17. C# - 복소수 타입의 승수를 지원하는 Power 메서드 [링크 복사], [링크+제목 복사],
조회: 24633
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

C# - 복소수 타입의 승수를 지원하는 Power 메서드

Math.PI를 오일러 공식에 대입하면 다음의 식을 얻게 됩니다.

eπi + 1 = 0;

그런데, 저 값을 실제로 코드로 구현하려면 어떻게 해야 할까요? 직관적인 코드로는 다음과 같이 작성해야 하는데,

Complex i = new Complex(0, 1);

double negOne = Math.Pow(Math.E, (Math.PI * i)); // 컴파일 에러!

애석하게도 닷넷 BCL에 기본 제공되는 Math.Pow 메서드는 복소수 타입의 제곱을 지원하지 않기 때문에 컴파일 오류가 발생합니다.

다행히 검색해 보면, Math.NET 라이브러리에 구현된 Complex32 타입은 복소수 타입의 제곱 함수를 제공해 줍니다.

Math.NET Numerics 3.11.1 
; https://www.nuget.org/packages/MathNet.Numerics/

Math.NET은 Nuget으로도 제공하기 때문에 다음과 같이 참조 추가를 해주고,

Install-Package MathNet.Numerics 

Complex32 타입에서 제공하는 Power 메서드를 사용해 복소수 승수를 사용해 주면 됩니다. 이렇게!

Complex32 i = new Complex32(0, 1);
Complex32 e = new Complex32((float)Math.E, 0);
Complex32 pi = new Complex32((float)Math.PI, 0);

Complex32 negOne = e.Power(pi * i);

Console.WriteLine(negOne); // (-1, 1.509958E-07)




Complex32 타입의 소스 코드를 참조하면 당연히 System.Nuemrics의 Complex 타입에도 복소수를 받는 Pow 메서드를 구현하는 것이 가능합니다. 이를 위해 다음과 같은 도우미 함수를 Math.NET으로부터 복사해 가져오고,

static class Helper
{
    public static readonly Complex Zero = new Complex(0, 0);
    public static readonly Complex One = new Complex(1, 0);
    public static readonly Complex NaN = new Complex(double.NaN, double.NaN);

    public static bool IsReal(this Complex complex)
    {
        return (complex.Imaginary == 0.0);
    }

    public static bool IsZero(this Complex complex)
    {
        return ((complex.Real == 0.0) && (complex.Imaginary == 0.0));
    }

    public static bool IsRealNonNegative(this Complex complex)
    {
        return ((complex.Imaginary == 0.0) && (complex.Real >= 0.0));
    }

    public static Complex Power(this Complex src, Complex exponent)
    {
        if (src.IsZero())
        {
            if (exponent.IsZero())
            {
                return One;
            }

            if (exponent.Real > 0f)
            {
                return Zero;
            }

            if (exponent.Real >= 0f)
            {
                return NaN;
            }

            if (exponent.Imaginary != 0f)
            {
                return new Complex(double.PositiveInfinity, double.PositiveInfinity);
            }

            return new Complex(double.PositiveInfinity, 0f);
        }

        Complex complex = exponent * src.NaturalLogarithm();
        return complex.Exponential();
    }

    public static Complex NaturalLogarithm(this Complex src)
    {
        if (src.IsRealNonNegative())
        {
            return new Complex(Math.Log(src.Real), 0);
        }

        return new Complex(0.5 * (Math.Log(src.MagnitudeSquared())), src.Phase());
    }

    public static double MagnitudeSquared(this Complex src)
    {
        return ((src.Real * src.Real) + (src.Imaginary * src.Imaginary));
    }

    public static double Phase(this Complex src)
    {
        if ((src.Imaginary == 0f) && (src.Real < 0f))
        {
            return Math.PI;
        }

        return Math.Atan2(src.Imaginary, src.Real);
    }

    public static Complex Exponential(this Complex src)
    {
        double real = Math.Exp(src.Real);

        if (src.IsReal())
        {
            return new Complex(real, 0f);
        }

        return new Complex(real * (Math.Cos(src.Imaginary)),
                            real * (Math.Sin(src.Imaginary)));
    }
}

System.Numerics.Complex 타입을 이용해 Math.Pow 기능을 다음과 같이 구현할 수 있습니다.

Complex i = new Complex(0, 1);
Complex e = new Complex(Math.E, 0);

Complex negOne = e.Power(Math.PI * i);

Console.WriteLine(negOne); // (-1, 1.22460635382238E-16)

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/21/2016]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 166  167  168  169  170  171  172  173  174  175  [176]  177  178  179  180  ...
NoWriterDateCnt.TitleFile(s)
636정성태12/31/200823832.NET Framework: 118. 2진 검색을 이용한 리스트 정렬 삽입파일 다운로드1
635정성태12/29/200826417오류 유형: 66. 파일 암호화 오류 - Recovery policy configured for this system contains invalid recovery certificate
634정성태12/29/200840743기타: 25. 가상 키보드 관련 정리 [4]
633정성태12/20/200826231기타: 24. RMClock for x64 [2]
632정성태12/19/200834699기타: 23. D820 - 배터리 없이 바이오스 업데이트 방법 [2]파일 다운로드1
631정성태12/10/200843733VC++: 36. Detours 라이브러리를 이용한 Win32 API - Sleep 호출 가로채기 [3]
630정성태12/9/200824502.NET Framework: 117. WPF - TreeView에서 항목이 펼쳐질 때 Cursors.Wait 사용파일 다운로드1
629정성태12/7/200833687.NET Framework: 116. 소켓 연결 시간 제한
628정성태12/6/200822254.NET Framework: 115. Marshal 타입 관련 2가지 자원 해제 메서드파일 다운로드1
627정성태12/6/200824849VS.NET IDE: 58. VS.NET IDE 팁 - 커서 위치 이동 [1]
626정성태12/6/200824956오류 유형: 65. TF53018: The application tier XXXXXXX is attempting to connect to a data tier with an incompatible version
625정성태12/6/200825185오류 유형: 64. TFS 2008 SP1 설치 - MsiApplyMultiplePatches returned 0x643
624정성태12/5/200826092.NET Framework: 114. WPF 이벤트에 속한 핸들러 확인 [2]파일 다운로드1
623정성태12/4/200830540디버깅 기술: 22. VS.NET SP1 + .NET Framework 소스 코드 디버깅 [2]파일 다운로드1
622정성태12/1/200832844오류 유형: 63. WPF - XamlParseException 대응 방법 [2]
621정성태11/30/200824933Team Foundation Server: 27. TeamBuild + VDPROJ 셋업 프로젝트 [1]
620정성태11/30/200823782디버깅 기술: 21. 올바른 이벤트 예외 정보 출력
619정성태11/30/200823893디버깅 기술: 20. 예외 처리를 방해하는 WPF Modal 대화창파일 다운로드1
618정성태11/29/200824128.NET Framework: 113. 이벤트에 속한 이벤트 핸들러 확인파일 다운로드1
617정성태11/26/200830395.NET Framework: 112. How to Interop DISPPARAMS [2]파일 다운로드2
616정성태11/26/200823729디버깅 기술: 19. C++/CLI - F11 디버깅 시의 변수 초기화파일 다운로드1
615정성태11/9/200833283.NET Framework: 111. WPF - Window, UserControl 클래스 상속 [1]
614정성태11/9/200833237.NET Framework: 110. WPF - 전역 예외 처리 [4]파일 다운로드1
613정성태11/8/200822752.NET Framework: 109. WPF - SystemColors 색상표파일 다운로드1
612정성태11/1/200828125.NET Framework: 108. WPF + WCF 환경에서는 DataContract를 권장 [1]
611정성태10/31/200822144오류 유형: 62. WPF - Visual Studio 2008 비정상 종료
... 166  167  168  169  170  171  172  173  174  175  [176]  177  178  179  180  ...