Microsoft MVP성태의 닷넷 이야기
Math: 17. C# - 복소수 타입의 승수를 지원하는 Power 메서드 [링크 복사], [링크+제목 복사],
조회: 24533
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

C# - 복소수 타입의 승수를 지원하는 Power 메서드

Math.PI를 오일러 공식에 대입하면 다음의 식을 얻게 됩니다.

eπi + 1 = 0;

그런데, 저 값을 실제로 코드로 구현하려면 어떻게 해야 할까요? 직관적인 코드로는 다음과 같이 작성해야 하는데,

Complex i = new Complex(0, 1);

double negOne = Math.Pow(Math.E, (Math.PI * i)); // 컴파일 에러!

애석하게도 닷넷 BCL에 기본 제공되는 Math.Pow 메서드는 복소수 타입의 제곱을 지원하지 않기 때문에 컴파일 오류가 발생합니다.

다행히 검색해 보면, Math.NET 라이브러리에 구현된 Complex32 타입은 복소수 타입의 제곱 함수를 제공해 줍니다.

Math.NET Numerics 3.11.1 
; https://www.nuget.org/packages/MathNet.Numerics/

Math.NET은 Nuget으로도 제공하기 때문에 다음과 같이 참조 추가를 해주고,

Install-Package MathNet.Numerics 

Complex32 타입에서 제공하는 Power 메서드를 사용해 복소수 승수를 사용해 주면 됩니다. 이렇게!

Complex32 i = new Complex32(0, 1);
Complex32 e = new Complex32((float)Math.E, 0);
Complex32 pi = new Complex32((float)Math.PI, 0);

Complex32 negOne = e.Power(pi * i);

Console.WriteLine(negOne); // (-1, 1.509958E-07)




Complex32 타입의 소스 코드를 참조하면 당연히 System.Nuemrics의 Complex 타입에도 복소수를 받는 Pow 메서드를 구현하는 것이 가능합니다. 이를 위해 다음과 같은 도우미 함수를 Math.NET으로부터 복사해 가져오고,

static class Helper
{
    public static readonly Complex Zero = new Complex(0, 0);
    public static readonly Complex One = new Complex(1, 0);
    public static readonly Complex NaN = new Complex(double.NaN, double.NaN);

    public static bool IsReal(this Complex complex)
    {
        return (complex.Imaginary == 0.0);
    }

    public static bool IsZero(this Complex complex)
    {
        return ((complex.Real == 0.0) && (complex.Imaginary == 0.0));
    }

    public static bool IsRealNonNegative(this Complex complex)
    {
        return ((complex.Imaginary == 0.0) && (complex.Real >= 0.0));
    }

    public static Complex Power(this Complex src, Complex exponent)
    {
        if (src.IsZero())
        {
            if (exponent.IsZero())
            {
                return One;
            }

            if (exponent.Real > 0f)
            {
                return Zero;
            }

            if (exponent.Real >= 0f)
            {
                return NaN;
            }

            if (exponent.Imaginary != 0f)
            {
                return new Complex(double.PositiveInfinity, double.PositiveInfinity);
            }

            return new Complex(double.PositiveInfinity, 0f);
        }

        Complex complex = exponent * src.NaturalLogarithm();
        return complex.Exponential();
    }

    public static Complex NaturalLogarithm(this Complex src)
    {
        if (src.IsRealNonNegative())
        {
            return new Complex(Math.Log(src.Real), 0);
        }

        return new Complex(0.5 * (Math.Log(src.MagnitudeSquared())), src.Phase());
    }

    public static double MagnitudeSquared(this Complex src)
    {
        return ((src.Real * src.Real) + (src.Imaginary * src.Imaginary));
    }

    public static double Phase(this Complex src)
    {
        if ((src.Imaginary == 0f) && (src.Real < 0f))
        {
            return Math.PI;
        }

        return Math.Atan2(src.Imaginary, src.Real);
    }

    public static Complex Exponential(this Complex src)
    {
        double real = Math.Exp(src.Real);

        if (src.IsReal())
        {
            return new Complex(real, 0f);
        }

        return new Complex(real * (Math.Cos(src.Imaginary)),
                            real * (Math.Sin(src.Imaginary)));
    }
}

System.Numerics.Complex 타입을 이용해 Math.Pow 기능을 다음과 같이 구현할 수 있습니다.

Complex i = new Complex(0, 1);
Complex e = new Complex(Math.E, 0);

Complex negOne = e.Power(Math.PI * i);

Console.WriteLine(negOne); // (-1, 1.22460635382238E-16)

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/21/2016]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 16  17  18  19  20  [21]  22  23  24  25  26  27  28  29  30  ...
NoWriterDateCnt.TitleFile(s)
13450정성태11/21/202311322닷넷: 2164. C# - Octokit을 이용한 GitHub Issue 검색파일 다운로드1
13449정성태11/21/202311876개발 환경 구성: 688. Azure OpenAI 서비스 신청 방법
13448정성태11/20/202311187닷넷: 2163. .NET 8 - Dynamic PGO를 결합한 성능 향상파일 다운로드1
13447정성태11/16/202311814닷넷: 2162. ASP.NET Core 웹 사이트의 SSL 설정을 코드로 하는 방법
13446정성태11/16/202312211닷넷: 2161. .NET Conf 2023 - Day 1 Blazor 개요 정리
13445정성태11/15/202313234Linux: 62. 리눅스/WSL에서 CA 인증서를 저장하는 방법
13444정성태11/15/202312322닷넷: 2160. C# 12 - Experimental 특성 지원
13443정성태11/14/202311617개발 환경 구성: 687. OpenSSL로 생성한 사용자 인증서를 ASP.NET Core 웹 사이트에 적용하는 방법
13442정성태11/13/202311067개발 환경 구성: 686. 비주얼 스튜디오로 실행한 ASP.NET Core 사이트를 WSL 2 인스턴스에서 https로 접속하는 방법
13441정성태11/12/202311951닷넷: 2159. C# - ASP.NET Core 프로젝트에서 서버 Socket을 직접 생성하는 방법파일 다운로드1
13440정성태11/11/202310565Windows: 253. 소켓 Listen 시 방화벽의 Public/Private 제어 기능이 비활성화된 경우
13439정성태11/10/202312426닷넷: 2158. C# - 소켓 포트를 미리 시스템에 등록/예약해 사용하는 방법(Port Exclusion Ranges)파일 다운로드1
13438정성태11/9/202312673닷넷: 2157. C# - WinRT 기능을 이용해 윈도우에서 실행 중인 Media App 제어
13437정성태11/8/202312856닷넷: 2156. .NET 7 이상의 콘솔 프로그램을 (dockerfile 없이) 로컬 docker에 배포하는 방법
13436정성태11/7/202313025닷넷: 2155. C# - .NET 8 런타임부터 (Reflection 없이) 특성을 이용해 public이 아닌 멤버 호출 가능
13435정성태11/6/202311582닷넷: 2154. C# - 네이티브 자원을 포함한 관리 개체(예: 스레드)의 GC 정리
13434정성태11/1/202312195스크립트: 62. 파이썬 - class의 정적 함수를 동적으로 교체
13433정성태11/1/202310710스크립트: 61. 파이썬 - 함수 오버로딩 미지원
13432정성태10/31/202311788오류 유형: 878. 탐색기의 WSL 디렉터리 접근 시 "Attempt to access invalid address." 오류 발생
13431정성태10/31/202312123스크립트: 60. 파이썬 - 비동기 FastAPI 앱을 gunicorn으로 호스팅
13430정성태10/30/202312602닷넷: 2153. C# - 사용자가 빌드한 ICU dll 파일을 사용하는 방법
13429정성태10/27/202312605닷넷: 2152. Win32 Interop - C/C++ DLL로부터 이중 포인터 버퍼를 C#으로 받는 예제파일 다운로드1
13428정성태10/25/202312918닷넷: 2151. C# 12 - ref readonly 매개변수
13427정성태10/18/202311614닷넷: 2150. C# 12 - 정적 문맥에서 인스턴스 멤버에 대한 nameof 접근 허용(Allow nameof to always access instance members from static context)
13426정성태10/13/202312481스크립트: 59. 파이썬 - 비동기 호출 함수(run_until_complete, run_in_executor, create_task, run_in_threadpool)
13425정성태10/11/202312771닷넷: 2149. C# - PLinq의 Partitioner<T>를 이용한 사용자 정의 분할파일 다운로드1
... 16  17  18  19  20  [21]  22  23  24  25  26  27  28  29  30  ...