Microsoft MVP성태의 닷넷 이야기
Math: 20. Matlab/Octave로 Gram-Schmidt 정규 직교 집합 구하는 방법 [링크 복사], [링크+제목 복사],
조회: 21150
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 
(연관된 글이 1개 있습니다.)

Matlab/Octave로 Gram-Schmidt 정규 직교 집합 구하는 방법

a 행렬을 정의하고,

a = [1,1,0; 0,1,2; 1,2,1]'
a =

   1   0   1
   1   1   2
   0   2   1

matlab/octave로 QR 분해하면 다음과 같은 결과가 나옵니다.

[q,r] = qr(a)
q =

  -0.70711   0.23570   0.66667
  -0.70711  -0.23570  -0.66667
  -0.00000  -0.94281   0.33333

r =

  -1.41421  -0.70711  -2.12132
   0.00000  -2.12132  -1.17851
   0.00000   0.00000  -0.33333

참고로, wolframalpha 웹 사이트에서 확인하면 실수 계산 값이 아닌 분수 형태의 값으로 구할 수 있습니다. (단지, 부호가 반대입니다.)

gram schmidt {{1,0,1},{1,1,2},{0,2,1}}
; http://m.wolframalpha.com/input/?i=gram+schmidt+%7B%7B1%2C1%2C0%7D%2C%7B0%2C1%2C2%7D%2C%7B1%2C2%2C1%7D%7D&x=0&y=0

1/sqrt(2), -1/(3*sqrt(2)), -2/3
1/sqrt(2), 1/(3*sqrt(2)) , 2/3
0        , 2*sqrt(2) / 3 , -1/3

여기서, Q 결괏값은 직교 행렬로 Xi * Xj = 0 (i != j)인 조건을 만족합니다. 검증은 다음과 같이 쉽게 할 수 있습니다.

# a1 = [-0.70711, -0.70711, 0]
# a2 = [0.23570, -0.23570, -0.94281]
# a3 = [0.66667, -0.66667, 0.33333]

a1 = q(:,1)'
a2 = q(:,2)'
a3 = q(:,3)'

>> dot(a1, a2)
ans = 0
>> dot(a2, a3)
ans = 1.3807e-006  // 실수 계산 값의 오차 누적으로 인한 것일 뿐 0 값임!
>> dot(a3, a1)
ans = 0

또한, Q 결괏값은 정규 직교 행렬이기 때문에 Xi * Xj = 1 (i == j)인 조건을 만족하고, 이는 norm의 값이 1이므로 다음과 같이 검증할 수 있습니다.

>> dot(a1,a1)
ans =  1.0000
>> norm(a1)
ans =  1.0000

// 이하 a2, a3에 대해서도 동일한 결괏값

QR 분해의 Q 행렬은 Gram-Schmidt 정규 직교화 과정에 해당하기 때문에 다음과 같이 수작업으로도 구할 수 있습니다.

a1 = [1,1,0]

na1 = norm(a1)
ea1 = a1 / na1 // 계산 값: 0.70711, 0.70711, 0

a2 = [0,1,2]
_a2 = a2 - dot(a2,ea1) * ea1

n_a2 = norm(_a2)
ea2 = _a2 / n_a2 // 계산 값: -0.23570   0.23570   0.94281

a3 = [1,2,1]
_a3 = a3 - dot(a3,ea1) * ea1 - dot(a3,ea2) * ea2

n_a3 = norm(_a3)
ea3 = _a3 / n_a3 // 계산 값: -0.66667   0.66667  -0.33333

재미있는 것은, 직접 계산한 값의 경우에도 부호는 wolframalpha의 것과 같은 반면 matlab/octave의 QR 함수와는 반대입니다. (혹시 이 이유를 알고 계신 분은 덧글 부탁드립니다. ^^)

실제로 이런 수작업을 별도의 함수로 구현하고 그것이 matlab/octave의 qr 함수와 같다는 것을 다음의 문서에서 정리하고 있습니다.

The Gram-Schmidt process in Matlab
; https://www.math.purdue.edu/~wang838/teaching/GramSchmidt.pdf




기왕 해본 김에 octave 명령어도 알아볼 겸, 정규 직교 집합을 시각화해보겠습니다.

a1 = [1,1,0]'
a2 = [0,1,2]'
a3 = [1,2,1]'

a = [a1 a2 a3]
[q,r] = qr(a)

ad1 = quiver3(0,0,0,-q(1),-q(2),-q(3))
hold on
ad2 = quiver3(0,0,0,-q(4),-q(5),-q(6))
hold on
ad3 = quiver3(0,0,0,-q(7),-q(8),-q(9))
hold on

axis equal

text(-q(1),-q(2),-q(3), 'ad1')
text(-q(4),-q(5),-q(6), 'ad2')
text(-q(7),-q(8),-q(9), 'ad3')

그럼, 다음과 같은 결과를 얻을 수 있고 "Rotate" 기능을 이용해 마우스로 이리저리 돌려 보면 3개의 벡터가 직교하고 있음을 눈으로 쉽게 확인할 수 있습니다.

gramschmidt_1.png




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 4/6/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  5  [6]  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13829정성태11/25/20246708스크립트: 67. 파이썬 - Windows 버전에서 함께 설치되는 py.exe
13828정성태11/25/20245205개발 환경 구성: 735. Azure - 압축 파일을 이용한 web app 배포 시 디렉터리 구분이 안 되는 문제파일 다운로드1
13827정성태11/25/20246029Windows: 273. Windows 환경의 파일 압축 방법 (tar, Compress-Archive)
13826정성태11/21/20246415닷넷: 2313. C# - (비밀번호 등의) Console로부터 입력받을 때 문자열 출력 숨기기(echo 끄기)파일 다운로드1
13825정성태11/21/20247060Linux: 110. eBPF / bpf2go - BPF_RINGBUF_OUTPUT / BPF_MAP_TYPE_RINGBUF 사용법
13824정성태11/20/20245438Linux: 109. eBPF / bpf2go - BPF_PERF_OUTPUT / BPF_MAP_TYPE_PERF_EVENT_ARRAY 사용법
13823정성태11/20/20246631개발 환경 구성: 734. Ubuntu에 docker, kubernetes (k3s) 설치
13822정성태11/20/20246504개발 환경 구성: 733. Windbg - VirtualBox VM의 커널 디버거 연결 시 COM 포트가 없는 경우
13821정성태11/18/20246106Linux: 108. Linux와 Windows의 프로세스/스레드 ID 관리 방식
13820정성태11/18/20246575VS.NET IDE: 195. Visual C++ - C# 프로젝트처럼 CopyToOutputDirectory 항목을 추가하는 방법
13819정성태11/15/20245140Linux: 107. eBPF - libbpf CO-RE의 CONFIG_DEBUG_INFO_BTF 빌드 여부에 대한 의존성
13818정성태11/15/20246704Windows: 272. Windows 11 24H2 - sudo 추가
13817정성태11/14/20245909Linux: 106. eBPF / bpf2go - (BPF_MAP_TYPE_HASH) Map을 이용한 전역 변수 구현
13816정성태11/14/20246856닷넷: 2312. C#, C++ - Windows / Linux 환경의 Thread Name 설정파일 다운로드1
13815정성태11/13/20245480Linux: 105. eBPF - bpf2go에서 전역 변수 설정 방법
13814정성태11/13/20246126닷넷: 2311. C# - Windows / Linux 환경에서 Native Thread ID 가져오기파일 다운로드1
13813정성태11/12/20246682닷넷: 2310. .NET의 Rune 타입과 emoji 표현파일 다운로드1
13812정성태11/11/202410302오류 유형: 933. Active Directory - The forest functional level is not supported.
13811정성태11/11/20245867Linux: 104. Linux - COLUMNS 환경변수가 언제나 80으로 설정되는 환경
13810정성태11/10/20246903Linux: 103. eBPF (bpf2go) - Tracepoint를 이용한 트레이스 (BPF_PROG_TYPE_TRACEPOINT)
13809정성태11/10/20246547Windows: 271. 윈도우 서버 2025 마이그레이션
13808정성태11/9/20246855오류 유형: 932. Linux - 커널 업그레이드 후 "error: bad shim signature" 오류 발생
13807정성태11/9/20245696Linux: 102. Linux - 커널 이미지 파일 서명 (Ubuntu 환경)
13806정성태11/8/20245873Windows: 270. 어댑터 상세 정보(Network Connection Details) 창의 내용이 비어 있는 경우
13805정성태11/8/20245484오류 유형: 931. Active Directory의 adprep 또는 복제가 안 되는 경우
13804정성태11/7/20247087Linux: 101. eBPF 함수의 인자를 다루는 방법
1  2  3  4  5  [6]  7  8  9  10  11  12  13  14  15  ...