Microsoft MVP성태의 닷넷 이야기
Math: 3. "유클리드 호제법"과 "Bezout's identity" 구현 코드(C#) [링크 복사], [링크+제목 복사],
조회: 28172
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

"유클리드 호제법"과 "Bezout's identity" 구현 코드(C#)


유클리드 호제법 (Euclidean algorithm)
; http://ko.wikipedia.org/wiki/%EC%9C%A0%ED%81%B4%EB%A6%AC%EB%93%9C_%ED%98%B8%EC%A0%9C%EB%B2%95

위에도 소스 코드가 공개되어 있지만, 워낙에 호제법이 명쾌해서 C# 코드로도 쉽게 옮길 수가 있습니다.

static void Main(string[] args)
{
    Console.WriteLine(GetResult(247, 962));
    Console.WriteLine(GetResult(963, 247));
}

private static string GetResult(int num1, int num2)
{
    int gcd = GetGreatestCommonDivisor(num1, num2);
    string numFormatter = "{{{0}, {1}}} == ";

    if (gcd == 1)
    {
        return string.Format(numFormatter + "Relatively Prime", num1, num2);
    }

    int lcm = num1 * num2 / gcd;

    return string.Format(numFormatter + "Greatest Common Divisor = {2}, Least Common Multiple = {3}",
        num1, num2, gcd, lcm);
}

static int GetGreatestCommonDivisor(int num1, int num2)
{
    if (num1 > num2)
    {
        return GetGreatestCommonDivisor(num2, num1);
    }

    int remainder = 0;

    do
    {
        remainder = num2 % num1;

        num2 = num1;
        num1 = remainder;
    } while (remainder != 0); // 호제법 구현 do/while 코드

    return num2;
}

/* 재귀 호출을 이용한 호제법
static int GetGreatestCommonDivisor(int num1, int num2)
{
    if (num2 == 0)
    {
        return num1;
    }

    return GetGreatestCommonDivisor(num2, num1 % num2)
}
*/

사실, 여기까지 할 거면 ^^ 이 글을 쓰지도 않았겠지요.

위의 위키피디아 글에 보면 "호제법의 확장"에 대해서도 이야기하고 있는데, 여기에 그대로 내용을 실어보면 다음과 같습니다.

"
정수 m, n의 최대공약수(Greatest Common Divisor)를 gcd(m,n)와 나타낼 때, 확장된 유클리드 호제법을 이용하여, am + bn = gcd(m,n)의 해가 되는 정수 a, b 짝을 찾아낼 수 있다.(a, b 중 한개는 보통 음수가 된다.) 이 식은 Bezout's identity 라고 한다. 위에서 든 예의 경우,

    1071 = 1 * 1029 + 42
    1029 = 24 * 42 + 21 
    42 = 2 * 21 
 
이므로

    21 = 1029 - 24 * 42 = 1029 - 24 * (1071 - 1 * 1029) = -24 * 1071 + 25 * 1029 
 
가 된다.
"

즉, 2개의 양수 a, b의 최대 공약수를 d라고 했을 때, d는 적절한 정수 r, s에 의해 "d = ar + bs"로 정리될 수 있다는 것인데요. 약간의 코딩을 추가하면 위의 최종 식을 구할 수도 있겠다는 생각이 들더군요.

이를 위해, 호제법을 구하는 코드에서 "a = bq + r"의 형태를 "r = a - bq"의 형태로 기억하는 구조체를 넣어두었습니다.

do
{
    remainder = num2 % num1;

    RemainderFormula form = new RemainderFormula();
    form.Remainder = remainder;
    form.SubtractOperand = num2;
    form.MultiplyOperand1 = num1;
    form.MultiplyOperand2 = (int)Math.Floor((double)num2 / num1);
    forms.Add(form);

    num2 = num1;
    num1 = remainder;

} while (remainder != 0);

forms.Remove(forms.Last());
forms.Reverse();

그다음, 아래와 같이 "Bezout's identity"를 구하는 코드를 추가했습니다.

Dictionary<int, int> counter = new Dictionary<int, int>();

int multiplier = 0;
foreach (var item in forms)
{
    if (counter.ContainsKey(item.SubtractOperand) == false)
    {
        counter[item.SubtractOperand] = 1 * ((multiplier == 0) ? 1 : multiplier);
    }
    else
    {
        counter[item.SubtractOperand]++;
    }

    if (counter.ContainsKey(item.MultiplyOperand1) == false)
    {
        counter[item.MultiplyOperand1] = -item.MultiplyOperand2;
    }
    else
    {
        counter[item.MultiplyOperand1] += (-item.MultiplyOperand2 * multiplier);
    }

    multiplier = counter[item.MultiplyOperand1];
}

sb.AppendLine(string.Format("\t\t{0} = {1}r + {2}s, when r == {3}, s == {4}",
    gcd, num1, num2, counter[num1], counter[num2]));

몇 가지 수를 가지고 테스트 해보니 ^^ 아래와 같이 결과가 잘 나오는 군요.

{247, 962} == Greatest Common Divisor = 13, Least Common Multiple = 18278
                13 = 247r + 962s, when r == -35, s == 9


{45, 126} == Greatest Common Divisor = 9, Least Common Multiple = 630
                9 = 45r + 126s, when r == 3, s == -1


{255, 315} == Greatest Common Divisor = 15, Least Common Multiple = 5355
                15 = 255r + 315s, when r == 5, s == -4


{288, 639} == Greatest Common Divisor = 9, Least Common Multiple = 20448
                9 = 288r + 639s, when r == 20, s == -9


{963, 247} == Relatively Prime

참고로, 위키피디아에 "Extended Euclidean algorithm"라고 해서 알고리즘 설명이 나오기는 하는데... 음... 제가 한 방식과는 다르군요.

function extended_gcd(a, b)
    x := 0    lastx := 1
    y := 1    lasty := 0
    while b ≠ 0
        quotient := a div b
        (a, b) := (b, a mod b)
        (x, lastx) := (lastx - quotient*x, x)
        (y, lasty) := (lasty - quotient*y, y)       
    return (lastx, lasty)

이를 C# 코드로 옮겨 보면 다음과 같습니다.

var tuple = GetExtendedGcd(num1, num2);
sb.AppendLine(string.Format("Extended Euclidean algorithm: r == {0}, s == {1}",
    tuple.Item2, tuple.Item1));

private static Tuple<int, int> GetExtendedGcd(int num1, int num2)
{
    if (num2 > num1)
    {
        return GetExtendedGcd(num2, num1);
    }

    int x = 0;
    int lastx = 1;
    int y = 1;
    int lasty = 0;

    int quotient = 0;

    int tempNum2, tempx, tempy;

    while (num2 != 0)
    {
        quotient = (int)Math.Floor((double)num1 / num2);

        tempNum2 = num2;
        num2 = num1 % num2;
        num1 = tempNum2;

        tempx = lastx - quotient * x;
        lastx = x;
        x = tempx;

        tempy = lasty - quotient * y;
        lasty = y;
        y = tempy;
    }

    return new Tuple<int,int>(lastx, lasty);
}

역시 머리 좋은 사람들은 다르군요. 동일한 결과를 내면서도 ^^ 제 것보다 더 간결합니다.

{247, 962} == Greatest Common Divisor = 13, Least Common Multiple = 18278
                13 = 247r + 962s, Extended Euclidean algorithm: r == -35, s == 9


{45, 126} == Greatest Common Divisor = 9, Least Common Multiple = 630
                9 = 45r + 126s, Extended Euclidean algorithm: r == 3, s == -1


{255, 315} == Greatest Common Divisor = 15, Least Common Multiple = 5355
                15 = 255r + 315s, Extended Euclidean algorithm: r == 5, s == -4


{288, 639} == Greatest Common Divisor = 9, Least Common Multiple = 20448
                9 = 288r + 639s, Extended Euclidean algorithm: r == 20, s == -9

첨부된 파일은 위의 코드를 포함한 예제 프로젝트입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/15/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 61  62  63  [64]  65  66  67  68  69  70  71  72  73  74  75  ...
NoWriterDateCnt.TitleFile(s)
12337정성태9/21/202018072오류 유형: 653. Windows - Time zone 설정을 바꿔도 반영이 안 되는 경우
12336정성태9/21/202021490.NET Framework: 942. C# - WOL(Wake On Lan) 구현
12335정성태9/21/202030647Linux: 31. 우분투 20.04 초기 설정 - 고정 IP 및 SSH 설치
12334정성태9/21/202015221오류 유형: 652. windbg - !py 확장 명령어 실행 시 "failed to find python interpreter"
12333정성태9/20/202015612.NET Framework: 941. C# - 전위/후위 증감 연산자에 대한 오버로딩 구현 (2)
12332정성태9/18/202018570.NET Framework: 940. C# - Windows Forms ListView와 DataGridView의 예제 코드파일 다운로드1
12331정성태9/18/202017453오류 유형: 651. repadmin /syncall - 0x80090322 The target principal name is incorrect.
12330정성태9/18/202018619.NET Framework: 939. C# - 전위/후위 증감 연산자에 대한 오버로딩 구현 [2]파일 다운로드1
12329정성태9/16/202020904오류 유형: 650. ASUS 메인보드 관련 소프트웨어 설치 후 ArmouryCrate.UserSessionHelper.exe 프로세스 무한 종료 현상
12328정성태9/16/202019912VS.NET IDE: 150. TFS의 이력에서 "Get This Version"과 같은 기능을 Git으로 처리한다면?
12327정성태9/12/202018057.NET Framework: 938. C# - ICS(Internet Connection Sharing) 제어파일 다운로드1
12326정성태9/12/202017408개발 환경 구성: 516. Azure VM의 Network Adapter를 실수로 비활성화한 경우
12325정성태9/12/202016668개발 환경 구성: 515. OpenVPN - 재부팅 후 ICS(Internet Connection Sharing) 기능이 동작 안하는 문제
12324정성태9/11/202017466개발 환경 구성: 514. smigdeploy.exe를 이용한 Windows Server 2016에서 2019로 마이그레이션 방법
12323정성태9/11/202016729오류 유형: 649. Copy Database Wizard - The job failed. Check the event log on the destination server for details.
12322정성태9/11/202020126개발 환경 구성: 513. Azure VM의 RDP 접속 위치 제한 [1]
12321정성태9/11/202015909오류 유형: 648. netsh http add urlacl - Error: 183 Cannot create a file when that file already exists.
12320정성태9/11/202017867개발 환경 구성: 512. RDP(원격 데스크톱) 접속 시 비밀 번호를 한 번 더 입력해야 하는 경우
12319정성태9/10/202017254오류 유형: 647. smigdeploy.exe를 Windows Server 2016에서 실행할 때 .NET Framework 미설치 오류 발생
12318정성태9/9/202016305오류 유형: 646. OpenVPN - "TAP-Windows Adapter V9" 어댑터의 "Network cable unplugged" 현상
12317정성태9/9/202019516개발 환경 구성: 511. Beats용 Kibana 기본 대시 보드 구성 방법
12316정성태9/8/202017304디버깅 기술: 170. WinDbg Preview 버전부터 닷넷 코어 3.0 이후의 메모리 덤프에 대해 sos.dll 자동 로드
12315정성태9/7/202019759개발 환경 구성: 510. Logstash - FileBeat을 이용한 IIS 로그 처리 [2]
12314정성태9/7/202019912오류 유형: 645. IIS HTTPERR - Timer_MinBytesPerSecond, Timer_ConnectionIdle 로그
12313정성태9/6/202019381개발 환경 구성: 509. Logstash - 사용자 정의 grok 패턴 추가를 이용한 IIS 로그 처리
12312정성태9/5/202026367개발 환경 구성: 508. Logstash 기본 사용법 [2]
... 61  62  63  [64]  65  66  67  68  69  70  71  72  73  74  75  ...