Microsoft MVP성태의 닷넷 이야기
Math: 3. "유클리드 호제법"과 "Bezout's identity" 구현 코드(C#) [링크 복사], [링크+제목 복사],
조회: 28175
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

"유클리드 호제법"과 "Bezout's identity" 구현 코드(C#)


유클리드 호제법 (Euclidean algorithm)
; http://ko.wikipedia.org/wiki/%EC%9C%A0%ED%81%B4%EB%A6%AC%EB%93%9C_%ED%98%B8%EC%A0%9C%EB%B2%95

위에도 소스 코드가 공개되어 있지만, 워낙에 호제법이 명쾌해서 C# 코드로도 쉽게 옮길 수가 있습니다.

static void Main(string[] args)
{
    Console.WriteLine(GetResult(247, 962));
    Console.WriteLine(GetResult(963, 247));
}

private static string GetResult(int num1, int num2)
{
    int gcd = GetGreatestCommonDivisor(num1, num2);
    string numFormatter = "{{{0}, {1}}} == ";

    if (gcd == 1)
    {
        return string.Format(numFormatter + "Relatively Prime", num1, num2);
    }

    int lcm = num1 * num2 / gcd;

    return string.Format(numFormatter + "Greatest Common Divisor = {2}, Least Common Multiple = {3}",
        num1, num2, gcd, lcm);
}

static int GetGreatestCommonDivisor(int num1, int num2)
{
    if (num1 > num2)
    {
        return GetGreatestCommonDivisor(num2, num1);
    }

    int remainder = 0;

    do
    {
        remainder = num2 % num1;

        num2 = num1;
        num1 = remainder;
    } while (remainder != 0); // 호제법 구현 do/while 코드

    return num2;
}

/* 재귀 호출을 이용한 호제법
static int GetGreatestCommonDivisor(int num1, int num2)
{
    if (num2 == 0)
    {
        return num1;
    }

    return GetGreatestCommonDivisor(num2, num1 % num2)
}
*/

사실, 여기까지 할 거면 ^^ 이 글을 쓰지도 않았겠지요.

위의 위키피디아 글에 보면 "호제법의 확장"에 대해서도 이야기하고 있는데, 여기에 그대로 내용을 실어보면 다음과 같습니다.

"
정수 m, n의 최대공약수(Greatest Common Divisor)를 gcd(m,n)와 나타낼 때, 확장된 유클리드 호제법을 이용하여, am + bn = gcd(m,n)의 해가 되는 정수 a, b 짝을 찾아낼 수 있다.(a, b 중 한개는 보통 음수가 된다.) 이 식은 Bezout's identity 라고 한다. 위에서 든 예의 경우,

    1071 = 1 * 1029 + 42
    1029 = 24 * 42 + 21 
    42 = 2 * 21 
 
이므로

    21 = 1029 - 24 * 42 = 1029 - 24 * (1071 - 1 * 1029) = -24 * 1071 + 25 * 1029 
 
가 된다.
"

즉, 2개의 양수 a, b의 최대 공약수를 d라고 했을 때, d는 적절한 정수 r, s에 의해 "d = ar + bs"로 정리될 수 있다는 것인데요. 약간의 코딩을 추가하면 위의 최종 식을 구할 수도 있겠다는 생각이 들더군요.

이를 위해, 호제법을 구하는 코드에서 "a = bq + r"의 형태를 "r = a - bq"의 형태로 기억하는 구조체를 넣어두었습니다.

do
{
    remainder = num2 % num1;

    RemainderFormula form = new RemainderFormula();
    form.Remainder = remainder;
    form.SubtractOperand = num2;
    form.MultiplyOperand1 = num1;
    form.MultiplyOperand2 = (int)Math.Floor((double)num2 / num1);
    forms.Add(form);

    num2 = num1;
    num1 = remainder;

} while (remainder != 0);

forms.Remove(forms.Last());
forms.Reverse();

그다음, 아래와 같이 "Bezout's identity"를 구하는 코드를 추가했습니다.

Dictionary<int, int> counter = new Dictionary<int, int>();

int multiplier = 0;
foreach (var item in forms)
{
    if (counter.ContainsKey(item.SubtractOperand) == false)
    {
        counter[item.SubtractOperand] = 1 * ((multiplier == 0) ? 1 : multiplier);
    }
    else
    {
        counter[item.SubtractOperand]++;
    }

    if (counter.ContainsKey(item.MultiplyOperand1) == false)
    {
        counter[item.MultiplyOperand1] = -item.MultiplyOperand2;
    }
    else
    {
        counter[item.MultiplyOperand1] += (-item.MultiplyOperand2 * multiplier);
    }

    multiplier = counter[item.MultiplyOperand1];
}

sb.AppendLine(string.Format("\t\t{0} = {1}r + {2}s, when r == {3}, s == {4}",
    gcd, num1, num2, counter[num1], counter[num2]));

몇 가지 수를 가지고 테스트 해보니 ^^ 아래와 같이 결과가 잘 나오는 군요.

{247, 962} == Greatest Common Divisor = 13, Least Common Multiple = 18278
                13 = 247r + 962s, when r == -35, s == 9


{45, 126} == Greatest Common Divisor = 9, Least Common Multiple = 630
                9 = 45r + 126s, when r == 3, s == -1


{255, 315} == Greatest Common Divisor = 15, Least Common Multiple = 5355
                15 = 255r + 315s, when r == 5, s == -4


{288, 639} == Greatest Common Divisor = 9, Least Common Multiple = 20448
                9 = 288r + 639s, when r == 20, s == -9


{963, 247} == Relatively Prime

참고로, 위키피디아에 "Extended Euclidean algorithm"라고 해서 알고리즘 설명이 나오기는 하는데... 음... 제가 한 방식과는 다르군요.

function extended_gcd(a, b)
    x := 0    lastx := 1
    y := 1    lasty := 0
    while b ≠ 0
        quotient := a div b
        (a, b) := (b, a mod b)
        (x, lastx) := (lastx - quotient*x, x)
        (y, lasty) := (lasty - quotient*y, y)       
    return (lastx, lasty)

이를 C# 코드로 옮겨 보면 다음과 같습니다.

var tuple = GetExtendedGcd(num1, num2);
sb.AppendLine(string.Format("Extended Euclidean algorithm: r == {0}, s == {1}",
    tuple.Item2, tuple.Item1));

private static Tuple<int, int> GetExtendedGcd(int num1, int num2)
{
    if (num2 > num1)
    {
        return GetExtendedGcd(num2, num1);
    }

    int x = 0;
    int lastx = 1;
    int y = 1;
    int lasty = 0;

    int quotient = 0;

    int tempNum2, tempx, tempy;

    while (num2 != 0)
    {
        quotient = (int)Math.Floor((double)num1 / num2);

        tempNum2 = num2;
        num2 = num1 % num2;
        num1 = tempNum2;

        tempx = lastx - quotient * x;
        lastx = x;
        x = tempx;

        tempy = lasty - quotient * y;
        lasty = y;
        y = tempy;
    }

    return new Tuple<int,int>(lastx, lasty);
}

역시 머리 좋은 사람들은 다르군요. 동일한 결과를 내면서도 ^^ 제 것보다 더 간결합니다.

{247, 962} == Greatest Common Divisor = 13, Least Common Multiple = 18278
                13 = 247r + 962s, Extended Euclidean algorithm: r == -35, s == 9


{45, 126} == Greatest Common Divisor = 9, Least Common Multiple = 630
                9 = 45r + 126s, Extended Euclidean algorithm: r == 3, s == -1


{255, 315} == Greatest Common Divisor = 15, Least Common Multiple = 5355
                15 = 255r + 315s, Extended Euclidean algorithm: r == 5, s == -4


{288, 639} == Greatest Common Divisor = 9, Least Common Multiple = 20448
                9 = 288r + 639s, Extended Euclidean algorithm: r == 20, s == -9

첨부된 파일은 위의 코드를 포함한 예제 프로젝트입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/15/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...
NoWriterDateCnt.TitleFile(s)
12059정성태11/20/201920058디버깅 기술: 131. windbg/Visual Studio - HeapFree x86의 동작 분석
12058정성태11/19/201920716디버깅 기술: 130. windbg - CoTaskMemFree/FreeCoTaskMem에서 발생한 덤프 분석 사례
12057정성태11/18/201916621오류 유형: 579. Visual Studio - Memory 창에서 유효한 주소 영역임에도 "Unable to evaluate the expression." 오류 출력
12056정성태11/18/201922270개발 환경 구성: 464. "Microsoft Visual Studio Installer Projects" 프로젝트로 EXE 서명 및 MSI 파일 서명 방법파일 다운로드1
12055정성태11/17/201916423개발 환경 구성: 463. Visual Studio의 Ctrl + Alt + M, 1 (Memory 1) 등의 단축키가 동작하지 않는 경우
12054정성태11/15/201917989.NET Framework: 869. C# - 일부러 GC Heap을 깨뜨려 GC 수행 시 비정상 종료시키는 예제
12053정성태11/15/201919769Windows: 166. 윈도우 10 - 명령행 창(cmd.exe) 속성에 (DotumChe, GulimChe, GungsuhChe 등의) 한글 폰트가 없는 경우
12052정성태11/15/201918568오류 유형: 578. Azure - 일정(schedule)에 등록한 runbook이 1년 후 실행이 안 되는 문제(Reason - The key used is expired.)
12051정성태11/14/201921987개발 환경 구성: 462. 시작하자마자 비정상 종료하는 프로세스의 메모리 덤프 - procdump [1]
12050정성태11/14/201919610Windows: 165. AcLayers의 API 후킹과 FaultTolerantHeap
12049정성태11/13/201920029.NET Framework: 868. (닷넷 프로세스를 대상으로) 디버거 방식이 아닌 CLR Profiler를 이용해 procdump.exe 기능 구현
12048정성태11/12/201920199Windows: 164. GUID 이름의 볼륨에 해당하는 파티션을 찾는 방법
12047정성태11/12/201922490Windows: 163. 안전하게 eject시킨 USB 장치를 물리적인 재연결 없이 다시 인식시키는 방법
12046정성태10/29/201917057오류 유형: 577. windbg - The call to LoadLibrary(...\sos.dll) failed, Win32 error 0n193
12045정성태10/27/201917001오류 유형: 576. mstest.exe 실행 시 "Visual Studio Enterprise is required to execute the test." 오류 - 두 번째 이야기
12044정성태10/27/201916580오류 유형: 575. mstest.exe - System.Resources.MissingSatelliteAssemblyException: The satellite assembly named "Microsoft.VisualStudio.ProductKeyDialog.resources.dll, ..."
12043정성태10/27/201918135오류 유형: 574. Windows 10 설치 시 오류 - 0xC1900101 - 0x4001E
12042정성태10/26/201917867오류 유형: 573. OneDrive 하위에 위치한 Documents, Desktop 폴더에 대한 권한 변경 시 "Unable to display current owner"
12041정성태10/23/201918832오류 유형: 572. mstest.exe - The load test results database could not be opened.
12040정성태10/23/201919199오류 유형: 571. Unhandled Exception: System.Net.Mail.SmtpException: Transaction failed. The server response was: 5.2.0 STOREDRV.Submission.Exception:SendAsDeniedException.MapiExceptionSendAsDenied
12039정성태10/22/201916637스크립트: 16. cmd.exe의 for 문에서는 ERRORLEVEL이 설정되지 않는 문제
12038정성태10/17/201916730오류 유형: 570. SQL Server 2019 RC1 - SQL Client Connectivity SDK 설치 오류
12037정성태10/15/201924195.NET Framework: 867. C# - Encoding.Default 값을 바꿀 수 있을까요?파일 다운로드1
12036정성태10/14/201925257.NET Framework: 866. C# - 고성능이 필요한 환경에서 GC가 발생하지 않는 네이티브 힙 사용파일 다운로드1
12035정성태10/13/201919520개발 환경 구성: 461. C# 8.0의 #nulable 관련 특성을 .NET Framework 프로젝트에서 사용하는 방법 [2]파일 다운로드1
12034정성태10/12/201918843개발 환경 구성: 460. .NET Core 환경에서 (프로젝트가 아닌) C# 코드 파일을 입력으로 컴파일하는 방법 [1]
... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...