Microsoft MVP성태의 닷넷 이야기
Math: 3. "유클리드 호제법"과 "Bezout's identity" 구현 코드(C#) [링크 복사], [링크+제목 복사],
조회: 28205
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

"유클리드 호제법"과 "Bezout's identity" 구현 코드(C#)


유클리드 호제법 (Euclidean algorithm)
; http://ko.wikipedia.org/wiki/%EC%9C%A0%ED%81%B4%EB%A6%AC%EB%93%9C_%ED%98%B8%EC%A0%9C%EB%B2%95

위에도 소스 코드가 공개되어 있지만, 워낙에 호제법이 명쾌해서 C# 코드로도 쉽게 옮길 수가 있습니다.

static void Main(string[] args)
{
    Console.WriteLine(GetResult(247, 962));
    Console.WriteLine(GetResult(963, 247));
}

private static string GetResult(int num1, int num2)
{
    int gcd = GetGreatestCommonDivisor(num1, num2);
    string numFormatter = "{{{0}, {1}}} == ";

    if (gcd == 1)
    {
        return string.Format(numFormatter + "Relatively Prime", num1, num2);
    }

    int lcm = num1 * num2 / gcd;

    return string.Format(numFormatter + "Greatest Common Divisor = {2}, Least Common Multiple = {3}",
        num1, num2, gcd, lcm);
}

static int GetGreatestCommonDivisor(int num1, int num2)
{
    if (num1 > num2)
    {
        return GetGreatestCommonDivisor(num2, num1);
    }

    int remainder = 0;

    do
    {
        remainder = num2 % num1;

        num2 = num1;
        num1 = remainder;
    } while (remainder != 0); // 호제법 구현 do/while 코드

    return num2;
}

/* 재귀 호출을 이용한 호제법
static int GetGreatestCommonDivisor(int num1, int num2)
{
    if (num2 == 0)
    {
        return num1;
    }

    return GetGreatestCommonDivisor(num2, num1 % num2)
}
*/

사실, 여기까지 할 거면 ^^ 이 글을 쓰지도 않았겠지요.

위의 위키피디아 글에 보면 "호제법의 확장"에 대해서도 이야기하고 있는데, 여기에 그대로 내용을 실어보면 다음과 같습니다.

"
정수 m, n의 최대공약수(Greatest Common Divisor)를 gcd(m,n)와 나타낼 때, 확장된 유클리드 호제법을 이용하여, am + bn = gcd(m,n)의 해가 되는 정수 a, b 짝을 찾아낼 수 있다.(a, b 중 한개는 보통 음수가 된다.) 이 식은 Bezout's identity 라고 한다. 위에서 든 예의 경우,

    1071 = 1 * 1029 + 42
    1029 = 24 * 42 + 21 
    42 = 2 * 21 
 
이므로

    21 = 1029 - 24 * 42 = 1029 - 24 * (1071 - 1 * 1029) = -24 * 1071 + 25 * 1029 
 
가 된다.
"

즉, 2개의 양수 a, b의 최대 공약수를 d라고 했을 때, d는 적절한 정수 r, s에 의해 "d = ar + bs"로 정리될 수 있다는 것인데요. 약간의 코딩을 추가하면 위의 최종 식을 구할 수도 있겠다는 생각이 들더군요.

이를 위해, 호제법을 구하는 코드에서 "a = bq + r"의 형태를 "r = a - bq"의 형태로 기억하는 구조체를 넣어두었습니다.

do
{
    remainder = num2 % num1;

    RemainderFormula form = new RemainderFormula();
    form.Remainder = remainder;
    form.SubtractOperand = num2;
    form.MultiplyOperand1 = num1;
    form.MultiplyOperand2 = (int)Math.Floor((double)num2 / num1);
    forms.Add(form);

    num2 = num1;
    num1 = remainder;

} while (remainder != 0);

forms.Remove(forms.Last());
forms.Reverse();

그다음, 아래와 같이 "Bezout's identity"를 구하는 코드를 추가했습니다.

Dictionary<int, int> counter = new Dictionary<int, int>();

int multiplier = 0;
foreach (var item in forms)
{
    if (counter.ContainsKey(item.SubtractOperand) == false)
    {
        counter[item.SubtractOperand] = 1 * ((multiplier == 0) ? 1 : multiplier);
    }
    else
    {
        counter[item.SubtractOperand]++;
    }

    if (counter.ContainsKey(item.MultiplyOperand1) == false)
    {
        counter[item.MultiplyOperand1] = -item.MultiplyOperand2;
    }
    else
    {
        counter[item.MultiplyOperand1] += (-item.MultiplyOperand2 * multiplier);
    }

    multiplier = counter[item.MultiplyOperand1];
}

sb.AppendLine(string.Format("\t\t{0} = {1}r + {2}s, when r == {3}, s == {4}",
    gcd, num1, num2, counter[num1], counter[num2]));

몇 가지 수를 가지고 테스트 해보니 ^^ 아래와 같이 결과가 잘 나오는 군요.

{247, 962} == Greatest Common Divisor = 13, Least Common Multiple = 18278
                13 = 247r + 962s, when r == -35, s == 9


{45, 126} == Greatest Common Divisor = 9, Least Common Multiple = 630
                9 = 45r + 126s, when r == 3, s == -1


{255, 315} == Greatest Common Divisor = 15, Least Common Multiple = 5355
                15 = 255r + 315s, when r == 5, s == -4


{288, 639} == Greatest Common Divisor = 9, Least Common Multiple = 20448
                9 = 288r + 639s, when r == 20, s == -9


{963, 247} == Relatively Prime

참고로, 위키피디아에 "Extended Euclidean algorithm"라고 해서 알고리즘 설명이 나오기는 하는데... 음... 제가 한 방식과는 다르군요.

function extended_gcd(a, b)
    x := 0    lastx := 1
    y := 1    lasty := 0
    while b ≠ 0
        quotient := a div b
        (a, b) := (b, a mod b)
        (x, lastx) := (lastx - quotient*x, x)
        (y, lasty) := (lasty - quotient*y, y)       
    return (lastx, lasty)

이를 C# 코드로 옮겨 보면 다음과 같습니다.

var tuple = GetExtendedGcd(num1, num2);
sb.AppendLine(string.Format("Extended Euclidean algorithm: r == {0}, s == {1}",
    tuple.Item2, tuple.Item1));

private static Tuple<int, int> GetExtendedGcd(int num1, int num2)
{
    if (num2 > num1)
    {
        return GetExtendedGcd(num2, num1);
    }

    int x = 0;
    int lastx = 1;
    int y = 1;
    int lasty = 0;

    int quotient = 0;

    int tempNum2, tempx, tempy;

    while (num2 != 0)
    {
        quotient = (int)Math.Floor((double)num1 / num2);

        tempNum2 = num2;
        num2 = num1 % num2;
        num1 = tempNum2;

        tempx = lastx - quotient * x;
        lastx = x;
        x = tempx;

        tempy = lasty - quotient * y;
        lasty = y;
        y = tempy;
    }

    return new Tuple<int,int>(lastx, lasty);
}

역시 머리 좋은 사람들은 다르군요. 동일한 결과를 내면서도 ^^ 제 것보다 더 간결합니다.

{247, 962} == Greatest Common Divisor = 13, Least Common Multiple = 18278
                13 = 247r + 962s, Extended Euclidean algorithm: r == -35, s == 9


{45, 126} == Greatest Common Divisor = 9, Least Common Multiple = 630
                9 = 45r + 126s, Extended Euclidean algorithm: r == 3, s == -1


{255, 315} == Greatest Common Divisor = 15, Least Common Multiple = 5355
                15 = 255r + 315s, Extended Euclidean algorithm: r == 5, s == -4


{288, 639} == Greatest Common Divisor = 9, Least Common Multiple = 20448
                9 = 288r + 639s, Extended Euclidean algorithm: r == 20, s == -9

첨부된 파일은 위의 코드를 포함한 예제 프로젝트입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/15/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 76  77  78  [79]  80  81  82  83  84  85  86  87  88  89  90  ...
NoWriterDateCnt.TitleFile(s)
11961정성태6/27/201917821Graphics: 37. C# - PLplot - 출력 모음(Family File Output)
11960정성태6/27/201918871Graphics: 36. C# - PLplot의 16색 이상을 표현하는 방법과 subpage를 이용한 그리드 맵 표현
11959정성태6/27/201920034Graphics: 35. matplotlib와 PLplot의 한글 처리
11958정성태6/25/201924544Linux: 18. C# - .NET Core Console로 리눅스 daemon 프로그램 만드는 방법 [6]
11957정성태6/24/201922901Windows: 160. WMI 쿼리를 명령행에서 간단하게 수행하는 wmic.exe [2]
11956정성태6/24/201921392Linux: 17. CentOS 7에서 .NET Core Web App 실행 환경 구성 [1]
11955정성태6/20/201919731Math: 60. C# - 로지스틱 회귀를 이용한 분류파일 다운로드1
11954정성태6/20/201918502오류 유형: 550. scp - sudo: no tty present and no askpass program specified
11953정성태6/20/201916665오류 유형: 549. The library 'libhostpolicy.so' required to execute the application was not found in '...'
11952정성태6/20/201917368Linux: 16. 우분투, Centos의 Netbios 호스트 이름 풀이 방법
11951정성태6/20/201920584오류 유형: 548. scp 연결 시 "Permission denied" 오류 및 "WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!" 경고
11950정성태6/18/201920714.NET Framework: 845. C# - 윈도우 작업 관리자와 리소스 모니터의 메모리 값을 구하는 방법
11949정성태6/18/201916024오류 유형: 547. CoreCLR Profiler 예제 프로젝트 빌드 시 컴파일 오류 유형
11948정성태6/17/201918480Linux: 15. 리눅스 환경의 Visual Studio Code에서 TFS 서버 연동
11947정성태6/17/201920249Linux: 14. 리눅스 환경에서 TFS 서버 연동
11946정성태6/17/201921225개발 환경 구성: 445. C# - MathNet으로 정규 분포를 따르는 데이터를 생성, PLplot으로 Histogram 표현파일 다운로드1
11945정성태6/17/201918949Linux: 13. node.js에서 syslog로 출력하는 방법
11944정성태6/16/201925304Linux: 12. Ubuntu 16.04/18.04에서 node.js 최신 버전 설치 방법
11943정성태6/15/201918544.NET Framework: 844. C# - 박싱과 언박싱 [1]
11942정성태6/13/201924812개발 환경 구성: 444. 로컬의 Visual Studio Code로 원격 리눅스 머신에 접속해 개발하는 방법 [1]
11941정성태6/13/201917493오류 유형: 546. "message NETSDK1057: You are using a preview version of .NET Core" 빌드 경고 없애는 방법
11940정성태6/13/201917734개발 환경 구성: 443. Visual Studio의 Connection Manager 기능(Remote SSH 관리)을 위한 명령행 도구파일 다운로드1
11939정성태6/13/201916520오류 유형: 545. Managed Debugging Assistant 'FatalExecutionEngineError'
11938정성태6/12/201919039Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류파일 다운로드1
11937정성태6/11/201925386개발 환경 구성: 442. .NET Core 3.0 preview 5를 이용해 Windows Forms/WPF 응용 프로그램 개발 [1]
11936정성태6/10/201918319Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인 [2]파일 다운로드1
... 76  77  78  [79]  80  81  82  83  84  85  86  87  88  89  90  ...