Microsoft MVP성태의 닷넷 이야기
Math: 22. 행렬로 바라보는 피보나치 수열 [링크 복사], [링크+제목 복사],
조회: 19719
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

행렬로 바라보는 피보나치 수열

다음의 책을 보니 재미있는 내용이 있습니다. ^^

프로그래머를 위한 선형대수
; http://www.yes24.com/24/goods/39446808

(평을 보시면 아시겠지만, 저 역시 추천하고 싶은 책입니다. ^^)

249페이지에 보면 "자기회귀모델(AR: AutoRegressive)"의 이산시간에 대한 예로,

오늘의 ζ(t)는 어제의 ζ(t - 1), 이틀 전의 ζ(t - 2), 사흘 전의 ζ(t - 3)과 오늘의 u(t)에 따라 다음과 같이 정해진다.

ζ(t) = -0.5ζ(t - 1) + 0.34ζ(t - 2) + 0.08ζ(t - 3) + 2u(t)

초기 조건 ζ(0) = 0.78, ζ(-1) = 0.8, ζ(-2) = 1.5

소개가 되면서 다음과 같이 행렬 표현을 합니다.




저걸 보니, 피보나치 수열이 생각났습니다.

황금비율 증명 - 피보나치 수와 연분수의 관계
; https://www.sysnet.pe.kr/2/0/1312

역시 초깃값이 주어지고 x(t)는 x(t - 1)에 의해 결정되니까요. 따라서 위와 같은 기준으로 피보나치 수열을 바라보면 다음과 같이 정리가 됩니다.

ζ(t) = 1ζ(t - 1) + 1ζ(t - 2)

초기 조건 ζ(0) = 1, ζ(-1) = 0

간단하게 t = 1 ~ 4까지 테스트하면 이렇게 되고,

t = 1일 때, ζ(1) = ζ(1 - 1) + ζ(1 - 2) = ζ(0) + ζ(-1) = 1 + 0 = 1
t = 2일 때, ζ(2) = ζ(2 - 1) + ζ(2 - 2) = ζ(1) + ζ(0) = 1 + 1 = 2
t = 3일 때, ζ(3) = ζ(3 - 1) + ζ(3 - 2) = ζ(2) + ζ(1) = 2 + 1 = 3
t = 4일 때, ζ(4) = ζ(4 - 1) + ζ(4 - 2) = ζ(3) + ζ(2) = 3 + 2 = 5

이를 행렬로 표현하면 다음과 같습니다.




마찬가지로 t = 1 ~ 4까지에 대해 행렬로 계산하면 이렇게 됩니다.







따라서 (초깃값 2개를 넘어) n 번째 피보나치 수열은,




보는 바와 같이 행렬 [1 1; 1 0]에 대해 n 승을 하고 그 값을 [1 0] 행렬에 곱하면 n 번째 피보나치 수열이 구해지는 것입니다. 실제로 octave 같은 도구를 이용해 다음과 같이 행렬 계산을 바로 해볼 수 있습니다.

function fib_1()
  
a = [1 1; 1 0]
b = [1;0]
a ^ 1 * b
a ^ 2 * b
a ^ 3 * b
a ^ 4 * b
a ^ 5 * b

endfunction

위의 함수를 실행하면 2*1 행렬이 5개가 출력되는 데 그것의 첫 번째 원소들을 보면 1, 2, 3, 5, 8로 피보나치 수열이 나옵니다.




행렬로 표현된 피보나치 계산에서 고윳값/고유벡터를 이용해 풀어보면 재미있는 결과가 나옵니다.

[선형대수학 #3] 고유값과 고유벡터 (eigenvalue & eigenvector)
; http://darkpgmr.tistory.com/105

행렬 [1 1; 1 0]에 대한 고윳값, 고유벡터를 계산해 보면,




위의 행렬식을 구하면,

= (1 - λ)(0 - λ) - 1
= λ2 - λ -1


위와 같이 구한 특성 다항식을 특성 방정식에 따라 0 값이 나오는 해를 구하면,

det(A - λ E) = 0

λ2 - λ -1 = 0

근의 공식에 따라,






와 같이 계산됩니다. 고윳값을 구했으니 고유벡터까지 구해볼까요? ^^



연립 방정식으로 풀으면,

(1 - λ)vx + vy = 0
vx - λvy = 0
vx = λvy

따라서, vx가 vy의 λ배로 이뤄진 무수히 많은 벡터 = [λt, t]


그럼 고유 벡터를 아무거나 다음과 같이 선정할 수 있습니다.



따라서 고윳값 λ의 2가지 값에 대해,






이 중에서 고유 벡터를 [(1 + sqrt(5)) / 2, 1]인 쌍으로 골라 보겠습니다. 이를 다시 Gram-Schmidt 정규 직교로 바꾸면,

Matlab/Octave로 Gram-Schmidt 정규 직교 집합 구하는 방법
; https://www.sysnet.pe.kr/2/0/11235

(0.52573, -0.85065), (-0.85065, -0.52573)로 구할 수 있습니다. 즉, 이 2개의 벡터 각각에 대응하는 λ배의 모든 벡터들이 고유 벡터들이 됩니다.




실제로 위의 과정들을 간단하게 octave로 구할 수 있습니다.

a = [1 1; 1 0]
[ev, ei] = eig(a)

ev = 
    0.52573 -0.85065
   -0.85065 -0.52573

ei =

Diagonal Matrix

   -0.61803   0
   0          1.61803

또한, Av = λv인 것도 다음과 같이 쉽게 계산해볼 수 있습니다.

a * [0.52573, -0.85065]'
ans =

  -0.32492
   0.52573

-0.61803 * [0.52573 -0.85065]'
ans =

  -0.32492
   0.52573




피보나치 수열의 고윳값과 고유벡터를 구했으니 n 번째 값을 구하는 방법에 대해 행렬의 성질로 다시 살펴보겠습니다.

"[선형대수학 #3] 고유값과 고유벡터 (eigenvalue & eigenvector)" 글에 보면 다음과 같은 공식이 나옵니다.

A = 행렬
P = 행렬 A의 고유벡터들을 열벡터로 하는 행렬
Λ = 교윳값들을 대각 원소로 하는 대각 행렬

AP = PΛ
A = PΛP-1

이를 기반으로 A의 n 승을 다음과 같이 쉽게 구할 수 있는 방법을 포함하고 있습니다.

Ak = (PΛP-1)k
   = (PΛP-1)(PΛP-1)......(PΛP-1)
   = PΛkP-1
   = Pdiag(λk1,......,λkn)P-1

따라서, 가령 5번째 피보나치 수를 구하고 싶다면 고유 벡터와 그것의 역행렬만 구한 후 고윳값 2개를 대각 행렬로 갖는 것만 5 승을 해주면 되는 것입니다. 이것을 octave로 다음과 같이 테스트할 수 있습니다.

ev * ei ^ 5 * inverse(ev)
ans =

    8.0000  5.0000
    5.0000  3.0000

즉, 고윳값을 알기 전에는 다음과 같은 행렬 계산이었지만,




고윳값을 알게 된 이상, 그것은 대각행렬의 n 승으로 바뀌었기 때문에 단순히 스칼라 값인 고윳값 2개만 n 승을 해주면 되는 문제로 바뀐 것입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 9/11/2017]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 151  152  153  [154]  155  156  157  158  159  160  161  162  163  164  165  ...
NoWriterDateCnt.TitleFile(s)
1202정성태12/21/201126048오류 유형: 144. The database '...' cannot be opened because it is version 661.
1201정성태12/14/201141115디버깅 기술: 47. .NET Reflector를 이용한 "소스 코드가 없는" 어셈블리 디버깅 [4]
1200정성태12/11/201126953디버깅 기술: 46. Windbg 확장 DLL 만들기 (2) - Debugger Extension API 사용파일 다운로드1
1199정성태12/11/201128372VC++: 55. JNI DLL 컴파일 시 x86과 x64의 Export된 함수의 이름이 왜 다를까요? [2]파일 다운로드1
1198정성태12/9/201132182디버깅 기술: 45. Windbg 확장 DLL 만들기 (1) - 스레드를 강제 종료시키는 명령어 [2]파일 다운로드1
1197정성태12/9/201129954.NET Framework: 282. Shader 강좌와 함께 배워보는 XNA Framework (2) - RenderMonkey의 Shader/Model 파일 연동파일 다운로드2
1196정성태12/9/201133144.NET Framework: 281. Shader 강좌와 함께 배워보는 XNA Framework (1) - 기초 프로그램 구조 [3]파일 다운로드2
1195정성태12/8/201147796오류 유형: 143. DXSDK_Jun10.exe 설치 시 "Error Code: S1023" 오류 해결하는 방법 [4]
1194정성태12/8/201135562개발 환경 구성: 137. Visual C++ 런타임 구성요소에 대한 디버그 버전 설치하는 방법
1193정성태12/8/201122597오류 유형: 142. Windows Phone SDK 7.1 설치 시 Expression Blend 제거를 요구하는 경우
1192정성태12/8/201125622개발 환경 구성: 136. Windows 7 SP1의 IIS에서 사용자 프로파일을 로드하는 방법
1191정성태12/6/201126788.NET Framework: 280. MVC3에서 JavaScriptSerializer 재정의하는 방법파일 다운로드1
1190정성태12/6/201129916오류 유형: 141. Visual C++ 컴파일 오류 - error C2275: 'xxxxx' : illegal use of this type as an expression [1]
1189정성태12/6/201137040VS.NET IDE: 70. Visual Studio에서 프로젝트 로드가 안된다면?
1188정성태12/3/201126144개발 환경 구성: 135. 마이크로소프트 TFS 호스팅 서비스 - Preview [3]
1187정성태12/2/201130800개발 환경 구성: 134. Robocopy 오류 및 종료 코드
1186정성태12/1/201132645.NET Framework: 279. WPF - 그리기 성능 및 Blurring 문제파일 다운로드1
1185정성태11/29/201123399.NET Framework: 278. WPF - Content의 Changed 이벤트에 해당하는게 뭔가요?파일 다운로드1
1184정성태11/29/201126200.NET Framework: 277. F#과 WPF가 어울리지 못하는 근본적인 이유 [2]
1183정성태11/26/201121674오류 유형: 140. Visual Studio 2010 - Floating된 에디트 윈도우가 사라지지 않는 경우 [2]
1182정성태11/25/201157423.NET Framework: 276. 중복 없는 숫자를 랜덤으로 배열하는 방법 [5]파일 다운로드1
1181정성태11/24/201127909디버깅 기술: 44. windbg의 mscordacwks DLL 로드 문제
1180정성태11/23/201137693.NET Framework: 275. 레지스트리 등록 및 Interop DLL 없이 COM 개체 사용하는 방법 [2]파일 다운로드1
1179정성태11/22/201128283.NET Framework: 274. ReaderWriterLockSlim은 언제 쓰는 걸까요? [4]파일 다운로드1
1178정성태11/19/201124775.NET Framework: 273. 설치된 .NET 버전에 민감한 코드를 포함하는 경우, 다중으로 어셈블리를 만들어야 할까요?파일 다운로드1
1177정성태11/18/201130021.NET Framework: 272. 소켓 연결 시간 제한 - 두 번째 이야기 [1]파일 다운로드1
... 151  152  153  [154]  155  156  157  158  159  160  161  162  163  164  165  ...