Microsoft MVP성태의 닷넷 이야기
Math: 22. 행렬로 바라보는 피보나치 수열 [링크 복사], [링크+제목 복사],
조회: 19662
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

행렬로 바라보는 피보나치 수열

다음의 책을 보니 재미있는 내용이 있습니다. ^^

프로그래머를 위한 선형대수
; http://www.yes24.com/24/goods/39446808

(평을 보시면 아시겠지만, 저 역시 추천하고 싶은 책입니다. ^^)

249페이지에 보면 "자기회귀모델(AR: AutoRegressive)"의 이산시간에 대한 예로,

오늘의 ζ(t)는 어제의 ζ(t - 1), 이틀 전의 ζ(t - 2), 사흘 전의 ζ(t - 3)과 오늘의 u(t)에 따라 다음과 같이 정해진다.

ζ(t) = -0.5ζ(t - 1) + 0.34ζ(t - 2) + 0.08ζ(t - 3) + 2u(t)

초기 조건 ζ(0) = 0.78, ζ(-1) = 0.8, ζ(-2) = 1.5

소개가 되면서 다음과 같이 행렬 표현을 합니다.




저걸 보니, 피보나치 수열이 생각났습니다.

황금비율 증명 - 피보나치 수와 연분수의 관계
; https://www.sysnet.pe.kr/2/0/1312

역시 초깃값이 주어지고 x(t)는 x(t - 1)에 의해 결정되니까요. 따라서 위와 같은 기준으로 피보나치 수열을 바라보면 다음과 같이 정리가 됩니다.

ζ(t) = 1ζ(t - 1) + 1ζ(t - 2)

초기 조건 ζ(0) = 1, ζ(-1) = 0

간단하게 t = 1 ~ 4까지 테스트하면 이렇게 되고,

t = 1일 때, ζ(1) = ζ(1 - 1) + ζ(1 - 2) = ζ(0) + ζ(-1) = 1 + 0 = 1
t = 2일 때, ζ(2) = ζ(2 - 1) + ζ(2 - 2) = ζ(1) + ζ(0) = 1 + 1 = 2
t = 3일 때, ζ(3) = ζ(3 - 1) + ζ(3 - 2) = ζ(2) + ζ(1) = 2 + 1 = 3
t = 4일 때, ζ(4) = ζ(4 - 1) + ζ(4 - 2) = ζ(3) + ζ(2) = 3 + 2 = 5

이를 행렬로 표현하면 다음과 같습니다.




마찬가지로 t = 1 ~ 4까지에 대해 행렬로 계산하면 이렇게 됩니다.







따라서 (초깃값 2개를 넘어) n 번째 피보나치 수열은,




보는 바와 같이 행렬 [1 1; 1 0]에 대해 n 승을 하고 그 값을 [1 0] 행렬에 곱하면 n 번째 피보나치 수열이 구해지는 것입니다. 실제로 octave 같은 도구를 이용해 다음과 같이 행렬 계산을 바로 해볼 수 있습니다.

function fib_1()
  
a = [1 1; 1 0]
b = [1;0]
a ^ 1 * b
a ^ 2 * b
a ^ 3 * b
a ^ 4 * b
a ^ 5 * b

endfunction

위의 함수를 실행하면 2*1 행렬이 5개가 출력되는 데 그것의 첫 번째 원소들을 보면 1, 2, 3, 5, 8로 피보나치 수열이 나옵니다.




행렬로 표현된 피보나치 계산에서 고윳값/고유벡터를 이용해 풀어보면 재미있는 결과가 나옵니다.

[선형대수학 #3] 고유값과 고유벡터 (eigenvalue & eigenvector)
; http://darkpgmr.tistory.com/105

행렬 [1 1; 1 0]에 대한 고윳값, 고유벡터를 계산해 보면,




위의 행렬식을 구하면,

= (1 - λ)(0 - λ) - 1
= λ2 - λ -1


위와 같이 구한 특성 다항식을 특성 방정식에 따라 0 값이 나오는 해를 구하면,

det(A - λ E) = 0

λ2 - λ -1 = 0

근의 공식에 따라,






와 같이 계산됩니다. 고윳값을 구했으니 고유벡터까지 구해볼까요? ^^



연립 방정식으로 풀으면,

(1 - λ)vx + vy = 0
vx - λvy = 0
vx = λvy

따라서, vx가 vy의 λ배로 이뤄진 무수히 많은 벡터 = [λt, t]


그럼 고유 벡터를 아무거나 다음과 같이 선정할 수 있습니다.



따라서 고윳값 λ의 2가지 값에 대해,






이 중에서 고유 벡터를 [(1 + sqrt(5)) / 2, 1]인 쌍으로 골라 보겠습니다. 이를 다시 Gram-Schmidt 정규 직교로 바꾸면,

Matlab/Octave로 Gram-Schmidt 정규 직교 집합 구하는 방법
; https://www.sysnet.pe.kr/2/0/11235

(0.52573, -0.85065), (-0.85065, -0.52573)로 구할 수 있습니다. 즉, 이 2개의 벡터 각각에 대응하는 λ배의 모든 벡터들이 고유 벡터들이 됩니다.




실제로 위의 과정들을 간단하게 octave로 구할 수 있습니다.

a = [1 1; 1 0]
[ev, ei] = eig(a)

ev = 
    0.52573 -0.85065
   -0.85065 -0.52573

ei =

Diagonal Matrix

   -0.61803   0
   0          1.61803

또한, Av = λv인 것도 다음과 같이 쉽게 계산해볼 수 있습니다.

a * [0.52573, -0.85065]'
ans =

  -0.32492
   0.52573

-0.61803 * [0.52573 -0.85065]'
ans =

  -0.32492
   0.52573




피보나치 수열의 고윳값과 고유벡터를 구했으니 n 번째 값을 구하는 방법에 대해 행렬의 성질로 다시 살펴보겠습니다.

"[선형대수학 #3] 고유값과 고유벡터 (eigenvalue & eigenvector)" 글에 보면 다음과 같은 공식이 나옵니다.

A = 행렬
P = 행렬 A의 고유벡터들을 열벡터로 하는 행렬
Λ = 교윳값들을 대각 원소로 하는 대각 행렬

AP = PΛ
A = PΛP-1

이를 기반으로 A의 n 승을 다음과 같이 쉽게 구할 수 있는 방법을 포함하고 있습니다.

Ak = (PΛP-1)k
   = (PΛP-1)(PΛP-1)......(PΛP-1)
   = PΛkP-1
   = Pdiag(λk1,......,λkn)P-1

따라서, 가령 5번째 피보나치 수를 구하고 싶다면 고유 벡터와 그것의 역행렬만 구한 후 고윳값 2개를 대각 행렬로 갖는 것만 5 승을 해주면 되는 것입니다. 이것을 octave로 다음과 같이 테스트할 수 있습니다.

ev * ei ^ 5 * inverse(ev)
ans =

    8.0000  5.0000
    5.0000  3.0000

즉, 고윳값을 알기 전에는 다음과 같은 행렬 계산이었지만,




고윳값을 알게 된 이상, 그것은 대각행렬의 n 승으로 바뀌었기 때문에 단순히 스칼라 값인 고윳값 2개만 n 승을 해주면 되는 문제로 바뀐 것입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 9/11/2017]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 61  62  63  64  65  66  67  68  [69]  70  71  72  73  74  75  ...
NoWriterDateCnt.TitleFile(s)
12211정성태4/27/202019277개발 환경 구성: 486. WSL에서 Makefile로 공개된 리눅스 환경의 C/C++ 소스 코드 빌드
12210정성태4/20/202020725.NET Framework: 903. .NET Framework의 Strong-named 어셈블리 바인딩 (1) - app.config을 이용한 바인딩 리디렉션 [1]파일 다운로드1
12209정성태4/13/202017426오류 유형: 614. 리눅스 환경에서 C/C++ 프로그램이 Segmentation fault 에러가 발생한 경우 (2)
12208정성태4/12/202015995Linux: 29. 리눅스 환경에서 C/C++ 프로그램이 Segmentation fault 에러가 발생한 경우
12207정성태4/2/202015850스크립트: 19. Windows PowerShell의 NonInteractive 모드
12206정성태4/2/202018449오류 유형: 613. 파일 잠금이 바로 안 풀린다면? - The process cannot access the file '...' because it is being used by another process.
12205정성태4/2/202015115스크립트: 18. Powershell에서는 cmd.exe의 명령어를 지원하진 않습니다.
12204정성태4/1/202015131스크립트: 17. Powershell 명령어에 ';' (semi-colon) 문자가 포함된 경우
12203정성태3/18/202017965오류 유형: 612. warning: 'C:\ProgramData/Git/config' has a dubious owner: '...'.
12202정성태3/18/202021214개발 환경 구성: 486. .NET Framework 프로젝트를 위한 GitLab CI/CD Runner 구성
12201정성태3/18/202018455오류 유형: 611. git-credential-manager.exe: Using credentials for username "Personal Access Token". [1]
12200정성태3/18/202018543VS.NET IDE: 145. NuGet + Github 라이브러리 디버깅 관련 옵션 3가지 - "Enable Just My Code" / "Enable Source Link support" / "Suppress JIT optimization on module load (Managed only)"
12199정성태3/17/202016183오류 유형: 610. C# - CodeDomProvider 사용 시 Unhandled Exception: System.IO.DirectoryNotFoundException: Could not find a part of the path '...\f2_6uod0.tmp'.
12198정성태3/17/202019539오류 유형: 609. SQL 서버 접속 시 "Cannot open user default database. Login failed."
12197정성태3/17/202018843VS.NET IDE: 144. .NET Core 콘솔 응용 프로그램을 배포(publish) 시 docker image 자동 생성 - 두 번째 이야기 [1]
12196정성태3/17/202015964오류 유형: 608. The ServicedComponent being invoked is not correctly configured (Use regsvcs to re-register).
12195정성태3/16/202018277.NET Framework: 902. C# - 프로세스의 모든 핸들을 열람 - 세 번째 이야기
12194정성태3/16/202021004오류 유형: 607. PostgreSQL - Npgsql.NpgsqlException: sorry, too many clients already
12193정성태3/16/202017951개발 환경 구성: 485. docker - SAP Adaptive Server Enterprise 컨테이너 실행 [1]
12192정성태3/14/202019982개발 환경 구성: 484. docker - Sybase Anywhere 16 컨테이너 실행
12191정성태3/14/202021064개발 환경 구성: 483. docker - OracleXE 컨테이너 실행 [1]
12190정성태3/14/202015649오류 유형: 606. Docker Desktop 업그레이드 시 "The process cannot access the file 'C:\Program Files\Docker\Docker\resources\dockerd.exe' because it is being used by another process."
12189정성태3/13/202021251개발 환경 구성: 482. Facebook OAuth 처리 시 상태 정보 전달 방법과 "유효한 OAuth 리디렉션 URI" 설정 규칙
12188정성태3/13/202026037Windows: 169. 부팅 시점에 실행되는 chkdsk 결과를 확인하는 방법
12187정성태3/12/202015621오류 유형: 605. NtpClient was unable to set a manual peer to use as a time source because of duplicate error on '...'.
12186정성태3/12/202017410오류 유형: 604. The SysVol Permissions for one or more GPOs on this domain controller and not in sync with the permissions for the GPOs on the Baseline domain controller.
... 61  62  63  64  65  66  67  68  [69]  70  71  72  73  74  75  ...