Microsoft MVP성태의 닷넷 이야기
Math: 22. 행렬로 바라보는 피보나치 수열 [링크 복사], [링크+제목 복사],
조회: 22363
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

행렬로 바라보는 피보나치 수열

다음의 책을 보니 재미있는 내용이 있습니다. ^^

프로그래머를 위한 선형대수
; http://www.yes24.com/24/goods/39446808

(평을 보시면 아시겠지만, 저 역시 추천하고 싶은 책입니다. ^^)

249페이지에 보면 "자기회귀모델(AR: AutoRegressive)"의 이산시간에 대한 예로,

오늘의 ζ(t)는 어제의 ζ(t - 1), 이틀 전의 ζ(t - 2), 사흘 전의 ζ(t - 3)과 오늘의 u(t)에 따라 다음과 같이 정해진다.

ζ(t) = -0.5ζ(t - 1) + 0.34ζ(t - 2) + 0.08ζ(t - 3) + 2u(t)

초기 조건 ζ(0) = 0.78, ζ(-1) = 0.8, ζ(-2) = 1.5

소개가 되면서 다음과 같이 행렬 표현을 합니다.




저걸 보니, 피보나치 수열이 생각났습니다.

황금비율 증명 - 피보나치 수와 연분수의 관계
; https://www.sysnet.pe.kr/2/0/1312

역시 초깃값이 주어지고 x(t)는 x(t - 1)에 의해 결정되니까요. 따라서 위와 같은 기준으로 피보나치 수열을 바라보면 다음과 같이 정리가 됩니다.

ζ(t) = 1ζ(t - 1) + 1ζ(t - 2)

초기 조건 ζ(0) = 1, ζ(-1) = 0

간단하게 t = 1 ~ 4까지 테스트하면 이렇게 되고,

t = 1일 때, ζ(1) = ζ(1 - 1) + ζ(1 - 2) = ζ(0) + ζ(-1) = 1 + 0 = 1
t = 2일 때, ζ(2) = ζ(2 - 1) + ζ(2 - 2) = ζ(1) + ζ(0) = 1 + 1 = 2
t = 3일 때, ζ(3) = ζ(3 - 1) + ζ(3 - 2) = ζ(2) + ζ(1) = 2 + 1 = 3
t = 4일 때, ζ(4) = ζ(4 - 1) + ζ(4 - 2) = ζ(3) + ζ(2) = 3 + 2 = 5

이를 행렬로 표현하면 다음과 같습니다.




마찬가지로 t = 1 ~ 4까지에 대해 행렬로 계산하면 이렇게 됩니다.







따라서 (초깃값 2개를 넘어) n 번째 피보나치 수열은,




보는 바와 같이 행렬 [1 1; 1 0]에 대해 n 승을 하고 그 값을 [1 0] 행렬에 곱하면 n 번째 피보나치 수열이 구해지는 것입니다. 실제로 octave 같은 도구를 이용해 다음과 같이 행렬 계산을 바로 해볼 수 있습니다.

function fib_1()
  
a = [1 1; 1 0]
b = [1;0]
a ^ 1 * b
a ^ 2 * b
a ^ 3 * b
a ^ 4 * b
a ^ 5 * b

endfunction

위의 함수를 실행하면 2*1 행렬이 5개가 출력되는 데 그것의 첫 번째 원소들을 보면 1, 2, 3, 5, 8로 피보나치 수열이 나옵니다.




행렬로 표현된 피보나치 계산에서 고윳값/고유벡터를 이용해 풀어보면 재미있는 결과가 나옵니다.

[선형대수학 #3] 고유값과 고유벡터 (eigenvalue & eigenvector)
; http://darkpgmr.tistory.com/105

행렬 [1 1; 1 0]에 대한 고윳값, 고유벡터를 계산해 보면,




위의 행렬식을 구하면,

= (1 - λ)(0 - λ) - 1
= λ2 - λ -1


위와 같이 구한 특성 다항식을 특성 방정식에 따라 0 값이 나오는 해를 구하면,

det(A - λ E) = 0

λ2 - λ -1 = 0

근의 공식에 따라,






와 같이 계산됩니다. 고윳값을 구했으니 고유벡터까지 구해볼까요? ^^



연립 방정식으로 풀으면,

(1 - λ)vx + vy = 0
vx - λvy = 0
vx = λvy

따라서, vx가 vy의 λ배로 이뤄진 무수히 많은 벡터 = [λt, t]


그럼 고유 벡터를 아무거나 다음과 같이 선정할 수 있습니다.



따라서 고윳값 λ의 2가지 값에 대해,






이 중에서 고유 벡터를 [(1 + sqrt(5)) / 2, 1]인 쌍으로 골라 보겠습니다. 이를 다시 Gram-Schmidt 정규 직교로 바꾸면,

Matlab/Octave로 Gram-Schmidt 정규 직교 집합 구하는 방법
; https://www.sysnet.pe.kr/2/0/11235

(0.52573, -0.85065), (-0.85065, -0.52573)로 구할 수 있습니다. 즉, 이 2개의 벡터 각각에 대응하는 λ배의 모든 벡터들이 고유 벡터들이 됩니다.




실제로 위의 과정들을 간단하게 octave로 구할 수 있습니다.

a = [1 1; 1 0]
[ev, ei] = eig(a)

ev = 
    0.52573 -0.85065
   -0.85065 -0.52573

ei =

Diagonal Matrix

   -0.61803   0
   0          1.61803

또한, Av = λv인 것도 다음과 같이 쉽게 계산해볼 수 있습니다.

a * [0.52573, -0.85065]'
ans =

  -0.32492
   0.52573

-0.61803 * [0.52573 -0.85065]'
ans =

  -0.32492
   0.52573




피보나치 수열의 고윳값과 고유벡터를 구했으니 n 번째 값을 구하는 방법에 대해 행렬의 성질로 다시 살펴보겠습니다.

"[선형대수학 #3] 고유값과 고유벡터 (eigenvalue & eigenvector)" 글에 보면 다음과 같은 공식이 나옵니다.

A = 행렬
P = 행렬 A의 고유벡터들을 열벡터로 하는 행렬
Λ = 교윳값들을 대각 원소로 하는 대각 행렬

AP = PΛ
A = PΛP-1

이를 기반으로 A의 n 승을 다음과 같이 쉽게 구할 수 있는 방법을 포함하고 있습니다.

Ak = (PΛP-1)k
   = (PΛP-1)(PΛP-1)......(PΛP-1)
   = PΛkP-1
   = Pdiag(λk1,......,λkn)P-1

따라서, 가령 5번째 피보나치 수를 구하고 싶다면 고유 벡터와 그것의 역행렬만 구한 후 고윳값 2개를 대각 행렬로 갖는 것만 5 승을 해주면 되는 것입니다. 이것을 octave로 다음과 같이 테스트할 수 있습니다.

ev * ei ^ 5 * inverse(ev)
ans =

    8.0000  5.0000
    5.0000  3.0000

즉, 고윳값을 알기 전에는 다음과 같은 행렬 계산이었지만,




고윳값을 알게 된 이상, 그것은 대각행렬의 n 승으로 바뀌었기 때문에 단순히 스칼라 값인 고윳값 2개만 n 승을 해주면 되는 문제로 바뀐 것입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 9/11/2017]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...
NoWriterDateCnt.TitleFile(s)
12153정성태2/23/202024419.NET Framework: 898. Trampoline을 이용한 후킹의 한계파일 다운로드1
12152정성태2/23/202021423.NET Framework: 897. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 세 번째 이야기(Trampoline 후킹)파일 다운로드1
12151정성태2/22/202024058.NET Framework: 896. C# - Win32 API를 Trampoline 기법을 이용해 C# 메서드로 가로채는 방법 - 두 번째 이야기 (원본 함수 호출)파일 다운로드1
12150정성태2/21/202024148.NET Framework: 895. C# - Win32 API를 Trampoline 기법을 이용해 C# 메서드로 가로채는 방법 [1]파일 다운로드1
12149정성태2/20/202021058.NET Framework: 894. eBEST C# XingAPI 래퍼 - 연속 조회 처리 방법 [1]
12148정성태2/19/202025734디버깅 기술: 163. x64 환경에서 구현하는 다양한 Trampoline 기법 [1]
12147정성태2/19/202021044디버깅 기술: 162. x86/x64의 기계어 코드 최대 길이
12146정성태2/18/202022237.NET Framework: 893. eBEST C# XingAPI 래퍼 - 로그인 처리파일 다운로드1
12145정성태2/18/202023851.NET Framework: 892. eBEST C# XingAPI 래퍼 - Sqlite 지원 추가파일 다운로드1
12144정성태2/13/202024026.NET Framework: 891. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 두 번째 이야기파일 다운로드1
12143정성태2/13/202018443.NET Framework: 890. 상황별 GetFunctionPointer 반환값 정리 - x64파일 다운로드1
12142정성태2/12/202022358.NET Framework: 889. C# 코드로 접근하는 MethodDesc, MethodTable파일 다운로드1
12141정성태2/10/202021369.NET Framework: 888. C# - ASP.NET Core 웹 응용 프로그램의 출력 가로채기 [2]파일 다운로드1
12140정성태2/10/202022715.NET Framework: 887. C# - ASP.NET 웹 응용 프로그램의 출력 가로채기파일 다운로드1
12139정성태2/9/202022410.NET Framework: 886. C# - Console 응용 프로그램에서 UI 스레드 구현 방법
12138정성태2/9/202028616.NET Framework: 885. C# - 닷넷 응용 프로그램에서 SQLite 사용 [6]파일 다운로드1
12137정성태2/9/202020261오류 유형: 592. [AhnLab] 경고 - 디버거 실행을 탐지했습니다.
12136정성태2/6/202021908Windows: 168. Windows + S(또는 Q)로 뜨는 작업 표시줄의 검색 바가 동작하지 않는 경우
12135정성태2/6/202027708개발 환경 구성: 468. Nuget 패키지의 로컬 보관 폴더를 옮기는 방법 [2]
12134정성태2/5/202024974.NET Framework: 884. eBEST XingAPI의 C# 래퍼 버전 - XingAPINet Nuget 패키지 [5]파일 다운로드1
12133정성태2/5/202022725디버깅 기술: 161. Windbg 환경에서 확인해 본 .NET 메서드 JIT 컴파일 전과 후 - 두 번째 이야기
12132정성태1/28/202025742.NET Framework: 883. C#으로 구현하는 Win32 API 후킹(예: Sleep 호출 가로채기) [1]파일 다운로드1
12131정성태1/27/202024473개발 환경 구성: 467. LocaleEmulator를 이용해 유니코드를 지원하지 않는(한글이 깨지는) 프로그램을 실행하는 방법 [1]
12130정성태1/26/202022033VS.NET IDE: 142. Visual Studio에서 windbg의 "Open Executable..."처럼 EXE를 직접 열어 디버깅을 시작하는 방법
12129정성태1/26/202029063.NET Framework: 882. C# - 키움 Open API+ 사용 시 Registry 등록 없이 KHOpenAPI.ocx 사용하는 방법 [3]
12128정성태1/26/202023174오류 유형: 591. The code execution cannot proceed because mfc100.dll was not found. Reinstalling the program may fix this problem.
... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...