Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 3개 있습니다.)
(시리즈 글이 10개 있습니다.)
.NET Framework: 707. OpenCV 응용 프로그램을 C#으로 구현 - OpenCvSharp
; https://www.sysnet.pe.kr/2/0/11402

.NET Framework: 708. C# - OpenCvSharp을 이용한 동영상(avi, mp4, ...) 처리
; https://www.sysnet.pe.kr/2/0/11403

.NET Framework: 709. C# - OpenCvSharp을 이용한 동영상(avi, mp4, ...) 처리 + Direct2D
; https://www.sysnet.pe.kr/2/0/11404

.NET Framework: 710. C# - OpenCvSharp을 이용한 Webcam 영상 처리 + Direct2D
; https://www.sysnet.pe.kr/2/0/11405

.NET Framework: 711. C# - OpenCvSharp의 Mat 데이터 조작 방법
; https://www.sysnet.pe.kr/2/0/11406

.NET Framework: 723. C# - OpenCvSharp 사용 시 C/C++을 이용한 속도 향상 (for 루프 연산)
; https://www.sysnet.pe.kr/2/0/11422

VC++: 123. 내가 만든 코드보다 OpenCV의 속도가 월등히 빠른 이유
; https://www.sysnet.pe.kr/2/0/11423

.NET Framework: 781. C# - OpenCvSharp 사용 시 포인터를 이용한 속도 향상
; https://www.sysnet.pe.kr/2/0/11567

개발 환경 구성: 447. Visual Studio Code에서 OpenCvSharp 개발 환경 구성
; https://www.sysnet.pe.kr/2/0/11971

Graphics: 38. C# - OpenCvSharp.VideoWriter에 BMP 파일을 1초씩 출력하는 예제
; https://www.sysnet.pe.kr/2/0/12485




C# - OpenCvSharp 사용 시 C/C++을 이용한 속도 향상 (for 루프 연산)

지난 글에서,

C# - OpenCvSharp을 이용한 동영상(avi, mp4, ...) 처리 + Direct2D
; https://www.sysnet.pe.kr/2/0/11404

RGB 이미지를 RGBA로 변환하기 위해 C# 코딩을 했었는데요, 이게 꽤나 성능이 안 좋았습니다. 반면, OpenCvSharp의 Mat 타입에서 제공하는 CvtColor 연산은 놀라울 정도로 높은 성능을 보였습니다. 따라서 당연히 CvtColor 메서드를 비롯해 가능하면 OpenCV가 제공하는 함수를 사용하는 것이 좋겠지만, 그래도 때로는 사용자 정의 루프를 작성해야 할 때가 있습니다.

그럴 때 성능이 안 좋은 C# 코딩보다는 그 부분만을 C/C++로 대체해 OpenCV 수준의 성능으로 끌어올리는 것이 바람직한데요, 그런 경우 어떤 식으로 해야 OpenCV 정도까지 성능이 개선되는지 테스트를 해봤습니다. ^^

연산 대상은 "C# - OpenCvSharp을 이용한 동영상(avi, mp4, ...) 처리 + Direct2D" 글에서도 다뤘던 RGB to RGBA 코드입니다.




우선, 기준이 되는 OpenCV 연산을 다음과 같이 할 수 있습니다.

static void Main(string[] args)
{
    using (Mat mat = new Mat(new Size(1920, 1080), MatType.CV_8UC3))
    {
        Convert(mat);
    }
}

static int Convert(Mat mat)
{
    using (Mat dstMat = mat.CvtColor(ColorConversionCodes.BGR2BGRA))
    {
        return dstMat.Width;
    }
}

그다음 동일한 연산을 C#으로 직접 For loop로 구현을 했습니다.

static unsafe int Convert2(Mat srcMat)
{
    byte *srcPtr = (byte *)srcMat.Data;

    using (Mat dstMat = new Mat(new Size(1920, 1080), MatType.CV_8UC4))
    {
        byte *dstPtr = (byte *)dstMat.Data;

        for (int y = 0; y < srcMat.Height; y++)
        {
            for (int x = 0; x < srcMat.Width - 1; x++)
            {
                int* src = (int*)srcPtr;
                int* dst = (int*)dstPtr;

                *dst = *src;
                *(dstPtr + 3) = 0xff;

                srcPtr = srcPtr + 3;
                dstPtr = dstPtr + 4;
            }

            Buffer.MemoryCopy(srcPtr, dstPtr, 3, 3);
            *(dstPtr + 3) = 0xff;
        }
    }

    return 0;
}

역시 동일한 코드를 C/C++ DLL을 만들어 export 함수로 C#에서 다음과 같이 호출하는 식으로 구현했습니다.

// ==== C# ====
[DllImport("MemCopyLib.dll")]
public unsafe extern static void RGB2RGBA(byte* srcPtr, byte* dstPtr, int width, int height);

static unsafe int Convert3(Mat srcMat)
{
    byte* srcPtr = (byte*)srcMat.Data;
    using (Mat dstMat = new Mat(new Size(1920, 1080), MatType.CV_8UC4))
    {
        byte* dstPtr = (byte*)dstMat.Data;
        RGB2RGBA(srcPtr, dstPtr, srcMat.Width, srcMat.Height);
    }

    return 0;
}

// ==== C/C++ ====
__declspec(dllexport) void RGB2RGBA(BYTE *srcPtr, BYTE *dstPtr, int width, int height)
{
    for (int y = 0; y < height; y++)
    {
        for (int x = 0; x < width; x++)
        {
            memcpy(dstPtr, srcPtr, 3);
            *(dstPtr + 3) = 0xff;

            srcPtr = srcPtr + 3;
            dstPtr = dstPtr + 4;
        }
    }
}

이렇게 만들고 실행해 보면, 다음과 같은 성능 수치를 볼 수 있습니다.

// 각각 Release 빌드로 100회씩 실행했으며, JIT 컴파일 보정을 위해 1회를 미리 실행한 후 시간 측정

opencv(100) : 690
c# for(100) : 7120
C++ for(100) : 1284

보면 OpenCV의 Mat.CvtColor 메서드가 단연 빠르고, 약 2배 늦은 속도로 단순 C++ for 구문 속도가 나오며 C#은 그보다도 7배까지 느린 것을 볼 수 있습니다. 즉, 이미지 처리 시 무거운 for 루프를 처리하는 경우라면 C#보다는 C/C++에 작업을 맡기는 것을 충분히 고려할만합니다.




그렇다면 OpenCV의 처리가 왜 그토록 빠른 것일까요? 이에 대한 해답은 지난번에 소개했던 것처럼 다음의 글에서 찾아볼 수 있습니다.

OpenCV - 속도 분석 (1)
; https://laonple.blog.me/220861902363

즉, 병렬 처리입니다. 이를 위해 C/C++ 코드를 다음과 같이 병렬 처리로 바꾸면,

// i5-4670 코어 4개에서 테스트

#include <ppl.h>

using namespace concurrency;

__declspec(dllexport) void RGB2RGBA_Parallel(BYTE *srcPtr, BYTE *dstPtr, int width, int height)
{
    parallel_for (0, height, [&](size_t y)
    {
        BYTE *srcPtrY = srcPtr + (y * width * 3);
        BYTE *dstPtrY = dstPtr + (y * width * 4);

        for (size_t x = 0; x < width; x++)
        {
            memcpy(dstPtrY, srcPtrY, 3);
            *(dstPtrY + 3) = 0xff;

            srcPtrY = srcPtrY + 3;
            dstPtrY = dstPtrY + 4;
        }
    });
}

1284ms였던 것이 609ms까지 내려갑니다. OpenCV 속도가 690ms이니 충분히 빨라진 것입니다. (물론, OpenCV가 범용 처리를 하는 것을 고려했을 때 당연히 우리가 만든 C/C++ 코드가 저 정도는 빨라야 합니다.)

그렇다면 혹시 C# 코드도 병렬 처리를 하면 많이 빨라질까요?

// i5-4670 코어 4개에서 테스트
static unsafe int Convert3(Mat srcMat)
{
    byte* srcPtr = (byte*)srcMat.Data;

    using (Mat dstMat = new Mat(new Size(1920, 1080), MatType.CV_8UC4))
    {
        byte* dstPtr = (byte*)dstMat.Data;

        Parallel.For(0, srcMat.Height, (y) =>
        {
            byte* srcPtrY = srcPtr + (y * srcMat.Width * 3);
            byte* dstPtrY = dstPtr + (y * srcMat.Width * 4);

            for (int x = 0; x < srcMat.Width - 1; x++)
            {
                int* src = (int*)srcPtrY;
                int* dst = (int*)dstPtrY;

                *dst = *src;
                *(dstPtrY + 3) = 0xff;

                srcPtrY = srcPtrY + 3;
                dstPtrY = dstPtrY + 4;
            }

            Buffer.MemoryCopy(srcPtrY, dstPtrY, 3, 3);
            *(dstPtrY + 3) = 0xff;
        });
    }

    return 0;
}

테스트해보면, 단독 스레드일 때 7355ms인 것에 비하면 2036ms를 기록하며 확실히 빨라졌지만 이는 C/C++ 단독 스레드 처리일 때보다도 느린 수치입니다.

(첨부 파일은 이 글의 소스 코드를 포함합니다.)

참고로 다음은 성능 수치를 엑셀 그래프로 그린 것입니다. 훨씬 직관적이군요. ^^

for_loop_perf.png




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/26/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2018-05-11 02시04분
내가 만든 코드보다 OpenCV의 속도가 월등히 빠른 이유
; http://www.sysnet.pe.kr/2/0/11423
정성태
2018-05-11 02시05분
CUDA로 작성한 RGB2RGBA 성능
; http://www.sysnet.pe.kr/2/0/11471
정성태
2018-06-05 07시24분
[qwe1234] unsafe 에서 포인터를 사용해서 메모리를 다루더라도 GC가 그 메모리 영역을 맘대로 relocate 하는 경우가 생겨서 fixed keyword를 써서 GC가 못 건드리게 해야 한다고 생각하는데 굳이 fixed를 사용하지 않아도 되나요???
[guest]
2018-06-05 10시59분
fixed하는 것은 "관리 메모리"로부터 unsafe 포인터를 구할 때 고정시키기 위해 사용하는 것입니다. OpenCvSharp의 Mat 클래스는 OpenCV 네이티브 모듈 내에서 할당한 비관리 메모리를 사용하므로 GC의 관리 대상이 아닙니다. 따라서 fixed 시킬 필요가 없습니다.
정성태

... 61  62  63  64  65  66  67  68  69  70  71  72  [73]  74  75  ...
NoWriterDateCnt.TitleFile(s)
12112정성태1/12/202016840오류 유형: 589. PowerShell - 원격 Invoke-Command 실행 시 "WinRM cannot complete the operation" 오류 발생
12111정성태1/12/202020649디버깅 기술: 155. C# - KernelMemoryIO 드라이버를 이용해 실행 프로그램을 숨기는 방법(DKOM: Direct Kernel Object Modification) [16]파일 다운로드1
12110정성태1/11/202020060디버깅 기술: 154. Patch Guard로 인해 블루 스크린(BSOD)가 발생하는 사례 [5]파일 다운로드1
12109정성태1/10/202016754오류 유형: 588. Driver 프로젝트 빌드 오류 - Inf2Cat error -2: "Inf2Cat, signability test failed."
12108정성태1/10/202017643오류 유형: 587. Kernel Driver 시작 시 127(The specified procedure could not be found.) 오류 메시지 발생
12107정성태1/10/202018812.NET Framework: 877. C# - 프로세스의 모든 핸들을 열람 - 두 번째 이야기
12106정성태1/8/202019786VC++: 136. C++ - OSR Driver Loader와 같은 Legacy 커널 드라이버 설치 프로그램 제작 [1]
12105정성태1/8/202018259디버깅 기술: 153. C# - PEB를 조작해 로드된 DLL을 숨기는 방법
12104정성태1/7/202019555DDK: 9. 커널 메모리를 읽고 쓰는 NT Legacy driver와 C# 클라이언트 프로그램 [4]
12103정성태1/7/202022677DDK: 8. Visual Studio 2019 + WDK Legacy Driver 제작- Hello World 예제 [1]파일 다운로드2
12102정성태1/6/202018930디버깅 기술: 152. User 권한(Ring 3)의 프로그램에서 _ETHREAD 주소(및 커널 메모리를 읽을 수 있다면 _EPROCESS 주소) 구하는 방법
12101정성태1/5/202019352.NET Framework: 876. C# - PEB(Process Environment Block)를 통해 로드된 모듈 목록 열람
12100정성태1/3/202016807.NET Framework: 875. .NET 3.5 이하에서 IntPtr.Add 사용
12099정성태1/3/202019688디버깅 기술: 151. Windows 10 - Process Explorer로 확인한 Handle 정보를 windbg에서 조회 [1]
12098정성태1/2/202019397.NET Framework: 874. C# - 커널 구조체의 Offset 값을 하드 코딩하지 않고 사용하는 방법 [3]
12097정성태1/2/202017516디버깅 기술: 150. windbg - Wow64, x86, x64에서의 커널 구조체(예: TEB) 구조체 확인
12096정성태12/30/201920028디버깅 기술: 149. C# - DbgEng.dll을 이용한 간단한 디버거 제작 [1]
12095정성태12/27/201921803VC++: 135. C++ - string_view의 동작 방식
12094정성태12/26/201919639.NET Framework: 873. C# - 코드를 통해 PDB 심벌 파일 다운로드 방법
12093정성태12/26/201919194.NET Framework: 872. C# - 로딩된 Native DLL의 export 함수 목록 출력파일 다운로드1
12092정성태12/25/201917874디버깅 기술: 148. cdb.exe를 이용해 (ntdll.dll 등에 정의된) 커널 구조체 출력하는 방법
12091정성태12/25/201920285디버깅 기술: 147. pdb 파일을 다운로드하기 위한 symchk.exe 실행에 필요한 최소 파일 [1]
12090정성태12/24/201920256.NET Framework: 871. .NET AnyCPU로 빌드된 PE 헤더의 로딩 전/후 차이점 [1]파일 다운로드1
12089정성태12/23/201919162디버깅 기술: 146. gflags와 _CrtIsMemoryBlock을 이용한 Heap 메모리 손상 여부 체크
12088정성태12/23/201918201Linux: 28. Linux - 윈도우의 "Run as different user" 기능을 shell에서 실행하는 방법
12087정성태12/21/201918600디버깅 기술: 145. windbg/sos - Dictionary의 entries 배열 내용을 모두 덤프하는 방법 (do_hashtable.py) [1]
... 61  62  63  64  65  66  67  68  69  70  71  72  [73]  74  75  ...