Microsoft MVP성태의 닷넷 이야기
Graphics: 10. Unity로 실습하는 Shader (6) - Mosaic Shading [링크 복사], [링크+제목 복사],
조회: 21669
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

(시리즈 글이 13개 있습니다.)
Graphics: 2. Unity로 실습하는 Shader
; https://www.sysnet.pe.kr/2/0/11607

Graphics: 3. Unity로 실습하는 Shader (1) - 컬러 반전 및 상하/좌우 뒤집기
; https://www.sysnet.pe.kr/2/0/11608

Graphics: 4. Unity로 실습하는 Shader (2) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model)
; https://www.sysnet.pe.kr/2/0/11609

Graphics: 5. Unity로 실습하는 Shader (3) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model) + Texture
; https://www.sysnet.pe.kr/2/0/11610

Graphics: 6. Unity로 실습하는 Shader (4) - 퐁 셰이딩(phong shading)
; https://www.sysnet.pe.kr/2/0/11611

Graphics: 7. Unity로 실습하는 Shader (5) - Flat Shading
; https://www.sysnet.pe.kr/2/0/11613

Graphics: 8. Unity Shader - Texture의 UV 좌표에 대응하는 Pixel 좌표
; https://www.sysnet.pe.kr/2/0/11614

Graphics: 9. Unity Shader - 전역 변수의 초기화
; https://www.sysnet.pe.kr/2/0/11616

Graphics: 10. Unity로 실습하는 Shader (6) - Mosaic Shading
; https://www.sysnet.pe.kr/2/0/11619

Graphics: 11. Unity로 실습하는 Shader (7) - Blur (평균값, 가우스, 중간값) 필터
; https://www.sysnet.pe.kr/2/0/11620

Graphics: 12. Unity로 실습하는 Shader (8) - 다중 패스(Multi-Pass Shader)
; https://www.sysnet.pe.kr/2/0/11628

Graphics: 13. Unity로 실습하는 Shader (9) - 투명 배경이 있는 텍스처 입히기
; https://www.sysnet.pe.kr/2/0/11631

Graphics: 19. Unity로 실습하는 Shader (10) - 빌보드 구현
; https://www.sysnet.pe.kr/2/0/11641




Unity로 실습하는 Shader (6) - Mosaic Shading

flat shading에 이어,

Unity로 실습하는 Shader (5) - Flat Shading
; https://www.sysnet.pe.kr/2/0/11613

모자이크(mosaic)도 가능하지 않을까...라는 생각이 들어 검색해 봤습니다.

fragment shader of mosaic filter 
; https://gist.github.com/ykob/08f335981f2f95dcf8d8d525a9a9e7b6

uniform vec2 resolution;
uniform sampler2D texture;

varying vec2 vUv;

const float mosaic = 12.0;

void main() {
  vec4 color = vec4(0.0);
  vec2 offset = vec2(mod(gl_FragCoord.x, mosaic), mod(gl_FragCoord.y, mosaic));

  for (float x = 0.0; x < mosaic; x++){
    for (float y = 0.0; y < mosaic; y++){
      color += texture2D(texture, vUv - (offset + vec2(x, y)) / resolution);
    }
  }
  gl_FragColor = color / pow(mosaic, 2.0);
}

위의 코드를 분석해 볼까요? 우선 gl_FragCoord 변수는,

gl_FragCoord ? contains the window-relative coordinates of the current fragment
; https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/gl_FragCoord.xhtml

gl_FragCoord assumes a lower-left origin for window coordinates and assumes pixel centers are located at half-pixel centers.


라고 설명하는데, 원점 위치가 다음과 같이 좌하단이 (0,0)이라고 합니다.

mosaic_shader_0.png

따라서 위의 경우 점 A는 (2, 3)이지만 gl_FragCoord로는 (2.5, 3.5)라는 것이고, pixel_center_integer 모드인 경우 (2.0, 3.0)이 됩니다. 그다음, mod 함수와 floor 함수를 익혀 두고,

mod ? compute value of one parameter modulo another
; https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/mod.xhtml

mod(x, y) == x - y * floor(x/y)

floor ? find the nearest integer less than or equal to the parameter
; https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/floor.xhtml

mosaic 변수의 값이 5라는 가정으로 offset 변수의 값을,

vec2 offset = vec2(mod(gl_FragCoord.x, mosaic), mod(gl_FragCoord.y, mosaic));

추적해 보면 다음과 같이 정리됩니다.

gl_FragCoord             offset

(0,0) 0 - 5 * floor(0/5)  (0,0)
(1,0) 1 - 5 * floor(1/5)  (1,0)
(2,0) 2 - 5 * floor(2/5)  (2,0)
(3,0) 3 - 5 * floor(3/5)  (3,0)
(4,0) 4 - 5 * floor(4/5)  (4,0)
(5,0) 5 - 5 * floor(5/5)  (0,0)
(6,0) 6 - 5 * floor(6/5)  (1,0)

그리고 위의 offset을 for 루프에 적용하면,

for (float x = 0.0; x < 5; x++)
{
  vec2 uvOffset = (offset + vec2(x, 0)) / resolution;
  color += texture2D(texture, vUv - uvOffset);
}

아래의 값들이 나열됩니다.

gl_FragCoord == (0,0)
uvOffset((0,0) + (0,0)) / resolution = (+x0 pixel 위치의 uv 값,0)
uvOffset((0,0) + (1,0)) / resolution = (+x1 pixel 위치의 uv 값,0)
uvOffset((0,0) + (2,0)) / resolution = (+x2 pixel 위치의 uv 값,0)
uvOffset((0,0) + (3,0)) / resolution = (+x3 pixel 위치의 uv 값,0)
uvOffset((0,0) + (4,0)) / resolution = (+x4 pixel 위치의 uv 값,0)

gl_FragCoord == (1,0)
uvOffset((1,0) + (0,0)) / resolution = (+x1 pixel 위치의 uv 값,0)
uvOffset((1,0) + (1,0)) / resolution = (+x2 pixel 위치의 uv 값,0)
uvOffset((1,0) + (2,0)) / resolution = (+x3 pixel 위치의 uv 값,0)
uvOffset((1,0) + (3,0)) / resolution = (+x4 pixel 위치의 uv 값,0)
uvOffset((1,0) + (4,0)) / resolution = (+x5 pixel 위치의 uv 값,0)

...[생략]...

gl_FragCoord == (4,0)
uvOffset((4,0) + (0,0)) / resolution = (+x4 pixel 위치의 uv 값,0)
uvOffset((4,0) + (1,0)) / resolution = (+x5 pixel 위치의 uv 값,0)
uvOffset((4,0) + (2,0)) / resolution = (+x6 pixel 위치의 uv 값,0)
uvOffset((4,0) + (3,0)) / resolution = (+x7 pixel 위치의 uv 값,0)
uvOffset((4,0) + (4,0)) / resolution = (+x8 pixel 위치의 uv 값,0)

gl_FragCoord == (5,0)
uvOffset((0,0) + (0,0)) / resolution = (+x0 pixel 위치의 uv 값,0)
uvOffset((0,0) + (1,0)) / resolution = (+x1 pixel 위치의 uv 값,0)
uvOffset((0,0) + (2,0)) / resolution = (+x2 pixel 위치의 uv 값,0)
uvOffset((0,0) + (3,0)) / resolution = (+x3 pixel 위치의 uv 값,0)
uvOffset((0,0) + (4,0)) / resolution = (+x4 pixel 위치의 uv 값,0)

gl_FragCoord == (6,0)
uvOffset((1,0) + (0,0)) / resolution = (+x1 pixel 위치의 uv 값,0)
uvOffset((1,0) + (1,0)) / resolution = (+x2 pixel 위치의 uv 값,0)
uvOffset((1,0) + (2,0)) / resolution = (+x3 pixel 위치의 uv 값,0)
uvOffset((1,0) + (3,0)) / resolution = (+x4 pixel 위치의 uv 값,0)
uvOffset((1,0) + (4,0)) / resolution = (+x5 pixel 위치의 uv 값,0)

대충 분석이 끝났군요. 위와 같이 구해진 uv 값을 vUv 값에서 빼는 형식이기 때문에 mosaic 값의 범위마다 같은 값을 갖게 됩니다.




위의 코드에서 resolution은 지난번의 글에 따라,

Unity Shader - Texture의 UV 좌표에 대응하는 Pixel 좌표
; https://www.sysnet.pe.kr/2/0/11614

_MainTex_TexelSize 변수를 이용하면 됩니다. 따라서 "fragment shader of mosaic filter" 코드는 Unity로 대략 다음과 같이 포팅할 수 있습니다.

fixed4 frag(v2f i) : SV_Target
{
    float mosaic = 24.0; // 외부 변수 처리
    float2 texelSize = _MainTex_TexelSize;

    float4 color = float4(0.0, 0.0, 0.0, 0.0);

    float2 offset = fmod(UVtoXY(i.uv, texelSize), mosaic);

    for (float x = 0.0; x < mosaic; x++) {
        for (float y = 0.0; y < mosaic; y++) {
            color += tex2D(_MainTex, i.uv -
                XYtoUV(offset + float2(x, y), texelSize)
            );
        }
    }

    color = color / pow(mosaic, 2.0);

    return (color * i.diffuse) + i.specular;
}

위의 코드를 지난번 고로 셰이딩과 합쳐 보면,

Unity로 실습하는 Shader (2) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model)
; https://www.sysnet.pe.kr/2/0/11609

다음과 같이 코딩할 수 있고,

Shader "My/mosaicShader"
{
    Properties
    {
        _MainTex("Texture", 2D) = "white" {}
        _Ka("Ambient Reflectance", Float) = 1.0
    }
    SubShader
    {
        Pass
        {
            CGPROGRAM
        #pragma vertex vert
        #pragma fragment frag

        #include "UnityCG.cginc"
        #include "Lighting.cginc"

            uniform float _Ka;
            sampler2D _MainTex;

            struct appdata
            {
                float4 vertex : POSITION;
                float3 normal : NORMAL;
                float2 uv : TEXCOORD0;
            };

            struct v2f
            {
                float4 vertex : SV_POSITION;
                float4 diffuse : COLOR0;
                float4 specular : COLOR1;
                float2 uv : TEXCOORD0;
            };

            v2f vert(appdata v)
            {
                v2f o;
                o.vertex = UnityObjectToClipPos(v.vertex);
                o.uv = v.uv;

                // 주변광
                float4 ambientReflection = 1.0 * UNITY_LIGHTMODEL_AMBIENT;

                // 확산광
                float3 worldNormal = UnityObjectToWorldNormal(v.normal);
                float3 lightDir = normalize(_WorldSpaceLightPos0); /* float4 _WorldSpaceLightPos0; */
                float3 diffuseReflection = 1.0 * _LightColor0.rgb * saturate(dot(worldNormal, lightDir));

                // 반사광
                float3 reflectedDir = reflect(-lightDir, worldNormal);
                float3 viewDir = normalize(_WorldSpaceCameraPos - worldNormal); /* float3 _WorldSpaceCameraPos; */
                float reflectIntensity = saturate(dot(reflectedDir, viewDir));

                float n = 4.0;
                reflectIntensity = pow(reflectIntensity, n);
                float3 specularReflection = 1.0 * _LightColor0 * reflectIntensity;

                o.diffuse = float4(ambientReflection + diffuseReflection, 1.0);
                o.specular = float4(specularReflection, 1.0);

                return o;
            }

            float4 _Color;
            float2 _MainTex_TexelSize;

            float2 UVtoXY(float2 uv, float2 texelSize)
            {
                return float2(uv.x / texelSize.x, uv.y / texelSize.y);
            }

            float2 XYtoUV(float2 pos, float2 texelSize)
            {
                return float2(pos.x * texelSize.x, pos.y * texelSize.y);
            }

            float2 imod(float2 xyPos, float mosaic)
            {
                return xyPos - mosaic * floor(xyPos / mosaic);
            }

            fixed4 frag(v2f i) : SV_Target
            {
                float mosaic = 24.0;
                float4 color = float4(0.0, 0.0, 0.0, 0.0);
                float2 texelSize = _MainTex_TexelSize;

                float2 offset = fmod(UVtoXY(i.uv, texelSize), mosaic);

                for (float x = 0.0; x < mosaic; x++) {
                    for (float y = 0.0; y < mosaic; y++) {
                        color += tex2D(_MainTex, i.uv -
                            XYtoUV(offset + float2(x, y), texelSize)
                        );
                    }
                }
                color = color / pow(mosaic, 2.0);

                return (color * i.diffuse) + i.specular;
            }

            ENDCG
        }
    }
}

적용 후의 렌더링 결과는 다음과 같습니다.

mosaic_shader_1.png




그런데, 사실 mosaic에 for 루프가 쓰였다는 것이 걸립니다. mosaic 자체가 그다지 정밀하게 보여줄 필요는 없으므로 for 루프에 따른 평균 색을 출력하기보다 그냥 단순하게 그 구획의 색상 하나를 대표색으로 출력해도 괜찮은 상황이 더 많을 것 같기 때문입니다. 그래서 다음과 같이 for 루프를 없앨 수 있습니다.

fixed4 frag(v2f i) : SV_Target
{
    float mosaic = 24.0; // 외부 변수 처리
    float4 color = float4(0.0, 0.0, 0.0, 0.0);
    float2 texelSize = _MainTex_TexelSize;

    float2 offset = fmod(UVtoXY(i.uv, texelSize), mosaic);
    color = tex2D(_MainTex, i.uv + XYtoUV(offset, texelSize));

    return (color * i.diffuse) + i.specular;
}

실제로 이 결과를 적용하면 평균을 낸 이전 예제보다 크게 차이가 나지 않습니다.

mosaic_shader_2.png

위의 화면에서 왼쪽은 구간 평균이고, 오른쪽은 대표 색입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 7/21/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... [181]  182  183  184  185  186  187  188  189  190  191  192  193  194  195  ...
NoWriterDateCnt.TitleFile(s)
458정성태2/12/200721844.NET Framework: 81. LINQ 개발 환경 설정 [1]
457정성태2/8/200726299.NET Framework: 80. LINQ 관련 용어 정리 및 리소스 소개 [2]
456정성태2/6/200724552Windows: 22. 가상화에 대해서.
455정성태2/4/200719400오류 유형: 25. 원격 데스크톱 환경에서의 Virtual Server 관리 환경 제어
454정성태2/4/200716898오류 유형: 24. VPC에서의 Vista 네트워킹 문제
509손대성6/24/200718991    답변글 오류 유형: 24.1. [답변]: 오류 유형 : 23. VPC 에서의 Vista 네트워킹 문제
453정성태2/4/200725067개발 환경 구성: 21. 서버 측 SoapExtension을 클라이언트에 알리고 싶다
452정성태1/31/200724782VC++: 31. 비스타에서 VS.NET 2005로 COM 프로젝트 빌드시 오류 [2]
451정성태1/31/200723947Windows: 21. Preview Handler 소개
450정성태1/30/200732237VS.NET IDE: 43. .NET에서의 필수 무결성 제어 조절하는 방법 - Manifest 파일 이용파일 다운로드2
449정성태2/4/200729058Windows: 20. UAC 이모저모 [2]
448정성태1/28/200724730Windows: 19. 3가지 유형의 가젯 프로그램
447정성태1/27/200721922Windows: 18. 비스타 도구 - 사양 정보 및 도구(Performance Information and Tools)
446정성태1/27/200730859VC++: 30. 필수 무결성 제어를 조절하는 방법(2) - 직접 코딩파일 다운로드1
445정성태2/8/200729437VC++: 29. 필수 무결성 제어를 조절하는 방법(1) - Manifest 파일 이용파일 다운로드2
444정성태1/27/200722867VC++: 28. 비스타 응용 프로그램 개발을 위한 VS.NET 2005 환경 설정
443정성태1/26/200721325VC++: 27. COM 개체로 인해 IE 7 비스타 버전이 종료될 때 오류 화면이 뜬다면?파일 다운로드1
442정성태1/24/200724317.NET Framework: 79. 새로운 암호화 클래스 (ECDsaCng, ECDiffieHellmanCng) 소개 [1]
441정성태1/23/200729047Windows: 17. 보안 데스크톱에서 활성화되지 않은 UAC 창이 안전할까?
440정성태1/24/200723180.NET Framework: 78. C# 3.0 - Anonymous types [1]
439정성태1/25/200724173.NET Framework: 77. C# 3.0 - Lambda 표현식 [1]
438정성태1/24/200723628.NET Framework: 76. C# 3.0 - 확장 함수
437정성태1/23/200731111Windows: 16. 개발자를 위한 UAC 환경 설정 [3]
436정성태1/17/200720270VS.NET IDE: 42. Orcas 2007년 1월 CTP 버전 설치 [5]
435정성태1/14/200719917기타: 17. 베타 제품과 최종 제품은 다르다 [2]
434정성태2/4/200723521Windows: 15. MIC 환경 구성 - Windows XP와 유사한 보안 설정 [4]
... [181]  182  183  184  185  186  187  188  189  190  191  192  193  194  195  ...