Microsoft MVP성태의 닷넷 이야기
Graphics: 10. Unity로 실습하는 Shader (6) - Mosaic Shading [링크 복사], [링크+제목 복사],
조회: 13756
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

(시리즈 글이 13개 있습니다.)
Graphics: 2. Unity로 실습하는 Shader
; https://www.sysnet.pe.kr/2/0/11607

Graphics: 3. Unity로 실습하는 Shader (1) - 컬러 반전 및 상하/좌우 뒤집기
; https://www.sysnet.pe.kr/2/0/11608

Graphics: 4. Unity로 실습하는 Shader (2) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model)
; https://www.sysnet.pe.kr/2/0/11609

Graphics: 5. Unity로 실습하는 Shader (3) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model) + Texture
; https://www.sysnet.pe.kr/2/0/11610

Graphics: 6. Unity로 실습하는 Shader (4) - 퐁 셰이딩(phong shading)
; https://www.sysnet.pe.kr/2/0/11611

Graphics: 7. Unity로 실습하는 Shader (5) - Flat Shading
; https://www.sysnet.pe.kr/2/0/11613

Graphics: 8. Unity Shader - Texture의 UV 좌표에 대응하는 Pixel 좌표
; https://www.sysnet.pe.kr/2/0/11614

Graphics: 9. Unity Shader - 전역 변수의 초기화
; https://www.sysnet.pe.kr/2/0/11616

Graphics: 10. Unity로 실습하는 Shader (6) - Mosaic Shading
; https://www.sysnet.pe.kr/2/0/11619

Graphics: 11. Unity로 실습하는 Shader (7) - Blur (평균값, 가우스, 중간값) 필터
; https://www.sysnet.pe.kr/2/0/11620

Graphics: 12. Unity로 실습하는 Shader (8) - 다중 패스(Multi-Pass Shader)
; https://www.sysnet.pe.kr/2/0/11628

Graphics: 13. Unity로 실습하는 Shader (9) - 투명 배경이 있는 텍스처 입히기
; https://www.sysnet.pe.kr/2/0/11631

Graphics: 19. Unity로 실습하는 Shader (10) - 빌보드 구현
; https://www.sysnet.pe.kr/2/0/11641




Unity로 실습하는 Shader (6) - Mosaic Shading

flat shading에 이어,

Unity로 실습하는 Shader (5) - Flat Shading
; https://www.sysnet.pe.kr/2/0/11613

모자이크(mosaic)도 가능하지 않을까...라는 생각이 들어 검색해 봤습니다.

fragment shader of mosaic filter 
; https://gist.github.com/ykob/08f335981f2f95dcf8d8d525a9a9e7b6

uniform vec2 resolution;
uniform sampler2D texture;

varying vec2 vUv;

const float mosaic = 12.0;

void main() {
  vec4 color = vec4(0.0);
  vec2 offset = vec2(mod(gl_FragCoord.x, mosaic), mod(gl_FragCoord.y, mosaic));

  for (float x = 0.0; x < mosaic; x++){
    for (float y = 0.0; y < mosaic; y++){
      color += texture2D(texture, vUv - (offset + vec2(x, y)) / resolution);
    }
  }
  gl_FragColor = color / pow(mosaic, 2.0);
}

위의 코드를 분석해 볼까요? 우선 gl_FragCoord 변수는,

gl_FragCoord ? contains the window-relative coordinates of the current fragment
; https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/gl_FragCoord.xhtml

gl_FragCoord assumes a lower-left origin for window coordinates and assumes pixel centers are located at half-pixel centers.


라고 설명하는데, 원점 위치가 다음과 같이 좌하단이 (0,0)이라고 합니다.

mosaic_shader_0.png

따라서 위의 경우 점 A는 (2, 3)이지만 gl_FragCoord로는 (2.5, 3.5)라는 것이고, pixel_center_integer 모드인 경우 (2.0, 3.0)이 됩니다. 그다음, mod 함수와 floor 함수를 익혀 두고,

mod ? compute value of one parameter modulo another
; https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/mod.xhtml

mod(x, y) == x - y * floor(x/y)

floor ? find the nearest integer less than or equal to the parameter
; https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/floor.xhtml

mosaic 변수의 값이 5라는 가정으로 offset 변수의 값을,

vec2 offset = vec2(mod(gl_FragCoord.x, mosaic), mod(gl_FragCoord.y, mosaic));

추적해 보면 다음과 같이 정리됩니다.

gl_FragCoord             offset

(0,0) 0 - 5 * floor(0/5)  (0,0)
(1,0) 1 - 5 * floor(1/5)  (1,0)
(2,0) 2 - 5 * floor(2/5)  (2,0)
(3,0) 3 - 5 * floor(3/5)  (3,0)
(4,0) 4 - 5 * floor(4/5)  (4,0)
(5,0) 5 - 5 * floor(5/5)  (0,0)
(6,0) 6 - 5 * floor(6/5)  (1,0)

그리고 위의 offset을 for 루프에 적용하면,

for (float x = 0.0; x < 5; x++)
{
  vec2 uvOffset = (offset + vec2(x, 0)) / resolution;
  color += texture2D(texture, vUv - uvOffset);
}

아래의 값들이 나열됩니다.

gl_FragCoord == (0,0)
uvOffset((0,0) + (0,0)) / resolution = (+x0 pixel 위치의 uv 값,0)
uvOffset((0,0) + (1,0)) / resolution = (+x1 pixel 위치의 uv 값,0)
uvOffset((0,0) + (2,0)) / resolution = (+x2 pixel 위치의 uv 값,0)
uvOffset((0,0) + (3,0)) / resolution = (+x3 pixel 위치의 uv 값,0)
uvOffset((0,0) + (4,0)) / resolution = (+x4 pixel 위치의 uv 값,0)

gl_FragCoord == (1,0)
uvOffset((1,0) + (0,0)) / resolution = (+x1 pixel 위치의 uv 값,0)
uvOffset((1,0) + (1,0)) / resolution = (+x2 pixel 위치의 uv 값,0)
uvOffset((1,0) + (2,0)) / resolution = (+x3 pixel 위치의 uv 값,0)
uvOffset((1,0) + (3,0)) / resolution = (+x4 pixel 위치의 uv 값,0)
uvOffset((1,0) + (4,0)) / resolution = (+x5 pixel 위치의 uv 값,0)

...[생략]...

gl_FragCoord == (4,0)
uvOffset((4,0) + (0,0)) / resolution = (+x4 pixel 위치의 uv 값,0)
uvOffset((4,0) + (1,0)) / resolution = (+x5 pixel 위치의 uv 값,0)
uvOffset((4,0) + (2,0)) / resolution = (+x6 pixel 위치의 uv 값,0)
uvOffset((4,0) + (3,0)) / resolution = (+x7 pixel 위치의 uv 값,0)
uvOffset((4,0) + (4,0)) / resolution = (+x8 pixel 위치의 uv 값,0)

gl_FragCoord == (5,0)
uvOffset((0,0) + (0,0)) / resolution = (+x0 pixel 위치의 uv 값,0)
uvOffset((0,0) + (1,0)) / resolution = (+x1 pixel 위치의 uv 값,0)
uvOffset((0,0) + (2,0)) / resolution = (+x2 pixel 위치의 uv 값,0)
uvOffset((0,0) + (3,0)) / resolution = (+x3 pixel 위치의 uv 값,0)
uvOffset((0,0) + (4,0)) / resolution = (+x4 pixel 위치의 uv 값,0)

gl_FragCoord == (6,0)
uvOffset((1,0) + (0,0)) / resolution = (+x1 pixel 위치의 uv 값,0)
uvOffset((1,0) + (1,0)) / resolution = (+x2 pixel 위치의 uv 값,0)
uvOffset((1,0) + (2,0)) / resolution = (+x3 pixel 위치의 uv 값,0)
uvOffset((1,0) + (3,0)) / resolution = (+x4 pixel 위치의 uv 값,0)
uvOffset((1,0) + (4,0)) / resolution = (+x5 pixel 위치의 uv 값,0)

대충 분석이 끝났군요. 위와 같이 구해진 uv 값을 vUv 값에서 빼는 형식이기 때문에 mosaic 값의 범위마다 같은 값을 갖게 됩니다.




위의 코드에서 resolution은 지난번의 글에 따라,

Unity Shader - Texture의 UV 좌표에 대응하는 Pixel 좌표
; https://www.sysnet.pe.kr/2/0/11614

_MainTex_TexelSize 변수를 이용하면 됩니다. 따라서 "fragment shader of mosaic filter" 코드는 Unity로 대략 다음과 같이 포팅할 수 있습니다.

fixed4 frag(v2f i) : SV_Target
{
    float mosaic = 24.0; // 외부 변수 처리
    float2 texelSize = _MainTex_TexelSize;

    float4 color = float4(0.0, 0.0, 0.0, 0.0);

    float2 offset = fmod(UVtoXY(i.uv, texelSize), mosaic);

    for (float x = 0.0; x < mosaic; x++) {
        for (float y = 0.0; y < mosaic; y++) {
            color += tex2D(_MainTex, i.uv -
                XYtoUV(offset + float2(x, y), texelSize)
            );
        }
    }

    color = color / pow(mosaic, 2.0);

    return (color * i.diffuse) + i.specular;
}

위의 코드를 지난번 고로 셰이딩과 합쳐 보면,

Unity로 실습하는 Shader (2) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model)
; https://www.sysnet.pe.kr/2/0/11609

다음과 같이 코딩할 수 있고,

Shader "My/mosaicShader"
{
    Properties
    {
        _MainTex("Texture", 2D) = "white" {}
        _Ka("Ambient Reflectance", Float) = 1.0
    }
    SubShader
    {
        Pass
        {
            CGPROGRAM
        #pragma vertex vert
        #pragma fragment frag

        #include "UnityCG.cginc"
        #include "Lighting.cginc"

            uniform float _Ka;
            sampler2D _MainTex;

            struct appdata
            {
                float4 vertex : POSITION;
                float3 normal : NORMAL;
                float2 uv : TEXCOORD0;
            };

            struct v2f
            {
                float4 vertex : SV_POSITION;
                float4 diffuse : COLOR0;
                float4 specular : COLOR1;
                float2 uv : TEXCOORD0;
            };

            v2f vert(appdata v)
            {
                v2f o;
                o.vertex = UnityObjectToClipPos(v.vertex);
                o.uv = v.uv;

                // 주변광
                float4 ambientReflection = 1.0 * UNITY_LIGHTMODEL_AMBIENT;

                // 확산광
                float3 worldNormal = UnityObjectToWorldNormal(v.normal);
                float3 lightDir = normalize(_WorldSpaceLightPos0); /* float4 _WorldSpaceLightPos0; */
                float3 diffuseReflection = 1.0 * _LightColor0.rgb * saturate(dot(worldNormal, lightDir));

                // 반사광
                float3 reflectedDir = reflect(-lightDir, worldNormal);
                float3 viewDir = normalize(_WorldSpaceCameraPos - worldNormal); /* float3 _WorldSpaceCameraPos; */
                float reflectIntensity = saturate(dot(reflectedDir, viewDir));

                float n = 4.0;
                reflectIntensity = pow(reflectIntensity, n);
                float3 specularReflection = 1.0 * _LightColor0 * reflectIntensity;

                o.diffuse = float4(ambientReflection + diffuseReflection, 1.0);
                o.specular = float4(specularReflection, 1.0);

                return o;
            }

            float4 _Color;
            float2 _MainTex_TexelSize;

            float2 UVtoXY(float2 uv, float2 texelSize)
            {
                return float2(uv.x / texelSize.x, uv.y / texelSize.y);
            }

            float2 XYtoUV(float2 pos, float2 texelSize)
            {
                return float2(pos.x * texelSize.x, pos.y * texelSize.y);
            }

            float2 imod(float2 xyPos, float mosaic)
            {
                return xyPos - mosaic * floor(xyPos / mosaic);
            }

            fixed4 frag(v2f i) : SV_Target
            {
                float mosaic = 24.0;
                float4 color = float4(0.0, 0.0, 0.0, 0.0);
                float2 texelSize = _MainTex_TexelSize;

                float2 offset = fmod(UVtoXY(i.uv, texelSize), mosaic);

                for (float x = 0.0; x < mosaic; x++) {
                    for (float y = 0.0; y < mosaic; y++) {
                        color += tex2D(_MainTex, i.uv -
                            XYtoUV(offset + float2(x, y), texelSize)
                        );
                    }
                }
                color = color / pow(mosaic, 2.0);

                return (color * i.diffuse) + i.specular;
            }

            ENDCG
        }
    }
}

적용 후의 렌더링 결과는 다음과 같습니다.

mosaic_shader_1.png




그런데, 사실 mosaic에 for 루프가 쓰였다는 것이 걸립니다. mosaic 자체가 그다지 정밀하게 보여줄 필요는 없으므로 for 루프에 따른 평균 색을 출력하기보다 그냥 단순하게 그 구획의 색상 하나를 대표색으로 출력해도 괜찮은 상황이 더 많을 것 같기 때문입니다. 그래서 다음과 같이 for 루프를 없앨 수 있습니다.

fixed4 frag(v2f i) : SV_Target
{
    float mosaic = 24.0; // 외부 변수 처리
    float4 color = float4(0.0, 0.0, 0.0, 0.0);
    float2 texelSize = _MainTex_TexelSize;

    float2 offset = fmod(UVtoXY(i.uv, texelSize), mosaic);
    color = tex2D(_MainTex, i.uv + XYtoUV(offset, texelSize));

    return (color * i.diffuse) + i.specular;
}

실제로 이 결과를 적용하면 평균을 낸 이전 예제보다 크게 차이가 나지 않습니다.

mosaic_shader_2.png

위의 화면에서 왼쪽은 구간 평균이고, 오른쪽은 대표 색입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 7/21/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... [61]  62  63  64  65  66  67  68  69  70  71  72  73  74  75  ...
NoWriterDateCnt.TitleFile(s)
12109정성태1/10/20209739오류 유형: 588. Driver 프로젝트 빌드 오류 - Inf2Cat error -2: "Inf2Cat, signability test failed."
12108정성태1/10/20209752오류 유형: 587. Kernel Driver 시작 시 127(The specified procedure could not be found.) 오류 메시지 발생
12107정성태1/10/202010704.NET Framework: 877. C# - 프로세스의 모든 핸들을 열람 - 두 번째 이야기
12106정성태1/8/202012127VC++: 136. C++ - OSR Driver Loader와 같은 Legacy 커널 드라이버 설치 프로그램 제작 [1]
12105정성태1/8/202010788디버깅 기술: 153. C# - PEB를 조작해 로드된 DLL을 숨기는 방법
12104정성태1/7/202011487DDK: 9. 커널 메모리를 읽고 쓰는 NT Legacy driver와 C# 클라이언트 프로그램 [4]
12103정성태1/7/202014196DDK: 8. Visual Studio 2019 + WDK Legacy Driver 제작- Hello World 예제 [1]파일 다운로드2
12102정성태1/6/202011818디버깅 기술: 152. User 권한(Ring 3)의 프로그램에서 _ETHREAD 주소(및 커널 메모리를 읽을 수 있다면 _EPROCESS 주소) 구하는 방법
12101정성태1/5/202011151.NET Framework: 876. C# - PEB(Process Environment Block)를 통해 로드된 모듈 목록 열람
12100정성태1/3/20209162.NET Framework: 875. .NET 3.5 이하에서 IntPtr.Add 사용
12099정성태1/3/202011488디버깅 기술: 151. Windows 10 - Process Explorer로 확인한 Handle 정보를 windbg에서 조회 [1]
12098정성태1/2/202011072.NET Framework: 874. C# - 커널 구조체의 Offset 값을 하드 코딩하지 않고 사용하는 방법 [3]
12097정성태1/2/20209631디버깅 기술: 150. windbg - Wow64, x86, x64에서의 커널 구조체(예: TEB) 구조체 확인
12096정성태12/30/201911640디버깅 기술: 149. C# - DbgEng.dll을 이용한 간단한 디버거 제작 [1]
12095정성태12/27/201913048VC++: 135. C++ - string_view의 동작 방식
12094정성태12/26/201911206.NET Framework: 873. C# - 코드를 통해 PDB 심벌 파일 다운로드 방법
12093정성태12/26/201911228.NET Framework: 872. C# - 로딩된 Native DLL의 export 함수 목록 출력파일 다운로드1
12092정성태12/25/201910625디버깅 기술: 148. cdb.exe를 이용해 (ntdll.dll 등에 정의된) 커널 구조체 출력하는 방법
12091정성태12/25/201912141디버깅 기술: 147. pdb 파일을 다운로드하기 위한 symchk.exe 실행에 필요한 최소 파일 [1]
12090정성태12/24/201910834.NET Framework: 871. .NET AnyCPU로 빌드된 PE 헤더의 로딩 전/후 차이점 [1]파일 다운로드1
12089정성태12/23/201911531디버깅 기술: 146. gflags와 _CrtIsMemoryBlock을 이용한 Heap 메모리 손상 여부 체크
12088정성태12/23/201910506Linux: 28. Linux - 윈도우의 "Run as different user" 기능을 shell에서 실행하는 방법
12087정성태12/21/201910939디버깅 기술: 145. windbg/sos - Dictionary의 entries 배열 내용을 모두 덤프하는 방법 (do_hashtable.py) [1]
12086정성태12/20/201913008디버깅 기술: 144. windbg - Marshal.FreeHGlobal에서 발생한 덤프 분석 사례
12085정성태12/20/201910752오류 유형: 586. iisreset - The data is invalid. (2147942413, 8007000d) 오류 발생 - 두 번째 이야기 [1]
12084정성태12/19/201911387디버깅 기술: 143. windbg/sos - Hashtable의 buckets 배열 내용을 모두 덤프하는 방법 (do_hashtable.py) [1]
... [61]  62  63  64  65  66  67  68  69  70  71  72  73  74  75  ...