Microsoft MVP성태의 닷넷 이야기
Math: 48. C# - 가우시안 함수의 이산형(discrete) 커널 값 생성 [링크 복사], [링크+제목 복사],
조회: 21349
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

가우시안 함수의 이산형(discrete) 커널 값 생성

shader 글에서 다룬,

Unity로 실습하는 Shader (7) - Blur (평균값, 가우스, 중간값) 필터
; https://www.sysnet.pe.kr/2/0/11620

가우스 함수는,

${ G(x) = \frac{1}{{\sigma \sqrt {2\pi } }}e^{{{ -{x}^2 } \mathord{\left/ \right. } {2\sigma ^2 }}}
}$


${ G(x, y) = \frac{1}{{\sigma ^2 {2\pi } }}e^{{{ - \left( x^2 + y^2 \right) } \mathord{\left/ \right. } {2\sigma ^2 }}}
}$


연속 함수이긴 하지만, 영상 처리에서는 pixel 좌표가 정수로 떨어지므로 이산값으로 처리해야 합니다. 가령, 1x7 크기의 가우스 분포 값을 구한다면 "-3, -2, -1, 0, 1, 2, 3" 값에 대해 위의 가우스 함수를 적용하면 됩니다.

따라서, σ = 1.0이고, x = [-3, -2, -1, 0, 1, 2, 3] 구간에 대해 가우스 분포를 다음의 C# 코드로 구할 수 있습니다.

using System;

namespace gaussK
{
    class Program
    {
        static void Main(string[] args)
        {
            int[] xArray = new int[] { -3, -2, -1, 0, 1, 2, 3 };
            double sigma = 5.0;

            WriteHost(Gaussian(sigma, xArray));

            int[] xyArray = xArray;
            WriteHost(Gaussian2D(sigma, xyArray));

        }

        private static double[] Gaussian(double sigma, int[] xArray)
        {
            double[] result = new double[xArray.Length];

            double c = 2.0 * sigma * sigma;
            double sc = 1.0 / (Math.Sqrt(2 * Math.PI) * sigma);
            for (int i = 0; i < xArray.Length; i++)
            {
                double xValue = xArray[i];
                result[i] = sc * Math.Pow(Math.E, -(xValue * xValue) / c);
            }

            return result;
        }

        private static double[,] Gaussian2D(double sigma, int[] xyArray)
        {
            double[,] result = new double[xyArray.Length, xyArray.Length];

            double c = 2 * sigma * sigma;
            double sc = 1.0 / (c * Math.PI);

            for (int i = 0; i < xyArray.Length; i++)
            {
                for (int j = 0; j < xyArray.Length; j++)
                {
                    double xValue = xyArray[i];
                    double yValue = xyArray[j];

                    result[i, j] = sc * Math.Pow(Math.E, -(xValue * xValue + yValue * yValue) / c);
                }
            }

            return result;
        }

        private static void WriteHost(double[] dblArray)
        {
            foreach (double value in dblArray)
            {
                Console.WriteLine(value.ToString("#0.000000"));
            }
        }

        private static void WriteHost(double[,] dblArray)
        {
            for (int i = 0; i < dblArray.GetLength(0); i++)
            {
                for (int j = 0; j < dblArray.GetLength(1); j++)
                {
                    Console.Write(dblArray[i, j].ToString("#0.000000") + ",");
                }

                Console.WriteLine();
            }
        }
    }
}

/*
출력 결과:

// sigma = 1, { -3, -2, -1, 0, 1, 2, 3 }
0.004432
0.053991
0.241971
0.398942
0.241971
0.053991
0.004432

0.000020,0.000239,0.001072,0.001768,0.001072,0.000239,0.000020,
0.000239,0.002915,0.013064,0.021539,0.013064,0.002915,0.000239,
0.001072,0.013064,0.058550,0.096532,0.058550,0.013064,0.001072,
0.001768,0.021539,0.096532,0.159155,0.096532,0.021539,0.001768,
0.001072,0.013064,0.058550,0.096532,0.058550,0.013064,0.001072,
0.000239,0.002915,0.013064,0.021539,0.013064,0.002915,0.000239,
0.000020,0.000239,0.001072,0.001768,0.001072,0.000239,0.000020,

// sigma = 1, { -4, -3, -2, -1, 0, 1, 2, 3, 4 }
0.000134
0.004432
0.053991
0.241971
0.398942
0.241971
0.053991
0.004432
0.000134

0.000000,0.000001,0.000007,0.000032,0.000053,0.000032,0.000007,0.000001,0.000000,
0.000001,0.000020,0.000239,0.001072,0.001768,0.001072,0.000239,0.000020,0.000001,
0.000007,0.000239,0.002915,0.013064,0.021539,0.013064,0.002915,0.000239,0.000007,
0.000032,0.001072,0.013064,0.058550,0.096532,0.058550,0.013064,0.001072,0.000032,
0.000053,0.001768,0.021539,0.096532,0.159155,0.096532,0.021539,0.001768,0.000053,
0.000032,0.001072,0.013064,0.058550,0.096532,0.058550,0.013064,0.001072,0.000032,
0.000007,0.000239,0.002915,0.013064,0.021539,0.013064,0.002915,0.000239,0.000007,
0.000001,0.000020,0.000239,0.001072,0.001768,0.001072,0.000239,0.000020,0.000001,
0.000000,0.000001,0.000007,0.000032,0.000053,0.000032,0.000007,0.000001,0.000000,
*/

재미있는 것은, "Unity로 실습하는 Shader (7) - Blur (평균값, 가우스, 중간값) 필터" 글에서 소개한,

Gaussian Kernel Calculator
; http://dev.theomader.com/gaussian-kernel-calculator/

사이트의 결과와 다를 때가 많다는 점입니다. 일례로, sigma == 1.0, kernel size == 3일 때 이 글의 코드는 다음의 값을 출력하지만,

0.241971
0.398942
0.241971

0.058550,0.096532,0.058550,
0.096532,0.159155,0.096532,
0.058550,0.096532,0.058550,

"Gaussian Kernel Calculator" 글에서는 아래와 같이 다소 차이가 납니다.

0.27901
0.44198
0.27901

0.077847 0.123317 0.077847
0.123317 0.195346 0.123317
0.077847 0.123317 0.077847

원인은 간단합니다. 제 코드에서는 sigma == 1.0일 때의 커널 합이 0.88288...인데, sigma 값에 따른 분포가 -1 ~ +1의 범위에서 1차원 가우시안 함수로는 (연속이 아닌) 이산 값으로 약 88%만 점유하기 때문입니다. 즉, 나머지 12% 정도에 대한 값이 없어졌기 때문에 총합이 1이어야 하는 커널 마스크로는 부적합한 값이 생성된 것입니다.

이를 보완하는 방법으로는 sigma 값에 따라 커널 크기를 늘려 잡는 것이 있습니다. 가령, 가우시안 분포의 경우 -4σ ~ +4σ의 범위 값은 전체 분포의 약 99.99%를 차지하기 때문에 적절한 커널 크기로 σ의 4배 * 2배가 되어야 하며, 아울러 짝수가 아닌 홀수여야 하기 때문에 +1이 필요합니다.

int recommendedSize = sigma * 4 * 2 + 1;

sigma가 커질수록 가우시안 분포의 종 모양이 낮아지고 넓어지므로 99.99%를 차지하기 위해 커널의 크기가 급격하게 커지는 것을 볼 수 있습니다. 이렇다 보니 성능에 민감한 실시간 이미지 처리 프로그램에서는 부담스러울 수밖에 없습니다.

이런 문제점을 "Gaussian Kernel Calculator" 글의 코드에서 보완하고 있습니다. 이것은 주어진 sigma에 따라 커널 크기를 임의로 잡아도 전체 가중치의 합이 1이 나오도록 보정하고 있는 것입니다. (코드가 자바스크립트로 공개되어 있으므로 여러분들이 사용하는 언어에 맞게 포팅할 수 있습니다.)




어차피 보정이니, 우리도 역시 마음대로 할 수 있습니다. 어찌 되었든 중요한 것은 마스크 배열의 합을 1에 근접하도록 유지하면 되는 것입니다. 따라서, 위에서 제 코드의 경우 sigma == 1.0, kernel size == 3인 경우 커널 합이 0.88288...이었으니, 나머지 0.11712... 값에 대해 배열 전체에 고르게 나눠주는 식으로 계산해 (임의의 정밀도 ε 차이를 만족하는) 1에 가깝게 만들 수도 있을 것입니다.

종 모양의 그래프로 보면, 양쪽 0.11712... 영역의 값을 중앙에 더하므로 종 모양이 고르게 올라오는 식의 보정 결과를 갖게 됩니다.

이런 보정을 하는 코드를 좀 멋있게 작성할 수도 있겠지만, 일단 다음과 같이 간단하게 총합이 1.0이 넘기 전까지 루프로 돌려 마스크 배열 값을 구하는 식으로 해보겠습니다.

double remains = (1.0 - sum) / dblArray.Length; // 커버하지 못한 종 모양의 영역 마스크 배열의 길이로 나누고,
double add = remains; // 초깃값을 지정 후,

double[] candidate = dblArray;

while (true)
{
    sum = 0.0;
    for (int i = 0; i < dblArray.Length; i++)
    {
        dblArray[i] += remains;
        sum += dblArray[i];
    }

    if (sum >= 1.0)
    {
        break;
    }

    Array.Copy(dblArray, candidate, dblArray.Length);
    add += 0.000001;
}

위의 코드로 sigma == 25.0, kernel size == 5x5로 했을 때 제 경우에는 다음의 커널을 얻을 수 있고,

// sigma = 25.0, my
float gaussian5x5BlurFilter[25] =
{
    0.039998,0.039998,0.039998,0.039998,0.039998,
    0.039998,0.039999,0.039999,0.039999,0.039998,
    0.039998,0.039999,0.039999,0.039999,0.039998,
    0.039998,0.039999,0.039999,0.039999,0.039998,
    0.039998,0.039998,0.039998,0.039998,0.039998,
};

"Gaussian Kernel Calculator" 글의 경우 다음의 커널을 얻을 수 있습니다.

// sigma = 25.0, online
float gaussian5x5BlurFilter[25] =
{
    0.039872, 0.039968, 0.04    , 0.039968, 0.039872,
    0.039968, 0.040064, 0.040096, 0.040064, 0.039968,
    0.04    , 0.040096, 0.040128, 0.040096, 0.04    ,
    0.039968, 0.040064, 0.040096, 0.040064, 0.039968,
    0.039872, 0.039968, 0.04    , 0.039968, 0.039872,
};

이를 지난번 글에서 다룬 shader에 적용해 보면, 지구본이 각각 다음과 같이 출력됩니다.

gaussian_kernel_1.pnggaussian_kernel_2.png

2개의 mask 배열에 대한 차이가 미미해서 솔직히 어느 게 어느 출력인지 구분이 안 갈 정도로 동일합니다.

(첨부 파일은 이 글의 소스 코드를 포함합니다.)




참고로 다음의 글에 보면,

Efficient Gaussian blur with linear sampling
; http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/

특정 크기에 대해 파스칼의 삼각형을 이용한 가우시안 분포의 근삿값을 구하는 방법을 설명하고 있습니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 6/27/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13917정성태4/30/202591VS.NET IDE: 199. Directory.Build.props에 정의한 속성에 대해 Condition 제약으로 값을 변경하는 방법
13916정성태4/23/2025488디버깅 기술: 221. WinDbg 분석 사례 - ASP.NET HttpCookieCollection을 다중 스레드에서 사용할 경우 무한 루프 현상 - 두 번째 이야기
13915정성태4/13/20251689닷넷: 2331. C# - 실행 시에 메서드 가로채기 (.NET 9)파일 다운로드1
13914정성태4/11/20252004디버깅 기술: 220. windbg 분석 사례 - x86 ASP.NET 웹 응용 프로그램의 CPU 100% 현상 (4)
13913정성태4/10/20251218오류 유형: 950. Process Explorer - 64비트 윈도우에서 32비트 프로세스의 덤프를 뜰 때 "Error writing dump file: Access is denied." 오류
13912정성태4/9/2025884닷넷: 2330. C# - 실행 시에 메서드 가로채기 (.NET 5 ~ .NET 8)파일 다운로드1
13911정성태4/8/20251117오류 유형: 949. WinDbg - .NET Core/5+ 응용 프로그램 디버깅 시 sos 확장을 자동으로 로드하지 못하는 문제
13910정성태4/8/20251267디버깅 기술: 219. WinDbg - 명령어 내에서 환경 변수 사용법
13909정성태4/7/20251783닷넷: 2329. C# - 실행 시에 메서드 가로채기 (.NET Framework 4.8)파일 다운로드1
13908정성태4/2/20252196닷넷: 2328. C# - MailKit: SMTP, POP3, IMAP 지원 라이브러리
13907정성태3/29/20252033VS.NET IDE: 198. (OneDrive, Dropbox 등의 공유 디렉터리에 있는) C# 프로젝트의 출력 경로 변경하기
13906정성태3/27/20252307닷넷: 2327. C# - 초기화되지 않은 메모리에 접근하는 버그?파일 다운로드1
13905정성태3/26/20252350Windows: 281. C++ - Windows / Critical Section의 안정화를 위해 도입된 "Keyed Event"파일 다운로드1
13904정성태3/25/20251925디버깅 기술: 218. Windbg로 살펴보는 Win32 Critical Section파일 다운로드1
13903정성태3/24/20251541VS.NET IDE: 197. (OneDrive, Dropbox 등의 공유 디렉터리에 있는) C++ 프로젝트의 출력 경로 변경하기
13902정성태3/24/20251760개발 환경 구성: 742. Oracle - 테스트용 hr 계정 및 데이터 생성파일 다운로드1
13901정성태3/9/20252139Windows: 280. Hyper-V의 3가지 Thread Scheduler (Classic, Core, Root)
13900정성태3/8/20252370스크립트: 72. 파이썬 - SQLAlchemy + oracledb 연동
13899정성태3/7/20251838스크립트: 71. 파이썬 - asyncio의 ContextVar 전달
13898정성태3/5/20252167오류 유형: 948. Visual Studio - Proxy Authentication Required: dotnetfeed.blob.core.windows.net
13897정성태3/5/20252405닷넷: 2326. C# - PowerShell과 연동하는 방법 (두 번째 이야기)파일 다운로드1
13896정성태3/5/20252216Windows: 279. Hyper-V Manager - VM 목록의 CPU Usage 항목이 항상 0%로 나오는 문제
13895정성태3/4/20252261Linux: 117. eBPF / bpf2go - Map에 추가된 요소의 개수를 확인하는 방법
13894정성태2/28/20252294Linux: 116. eBPF / bpf2go - BTF Style Maps 정의 구문과 데이터 정렬 문제
13893정성태2/27/20252239Linux: 115. eBPF (bpf2go) - ARRAY / HASH map 기본 사용법
[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...