Microsoft MVP성태의 닷넷 이야기
Graphics: 16. 3D 공간에서 두 점이 이루는 각도 구하기 [링크 복사], [링크+제목 복사],
조회: 31201
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

3D 공간에서 두 점이 이루는 각도 구하기

예를 들어, 다음과 같이 3D 공간에서 면과 점이 있다고 가정해 보겠습니다.

angle_between_two_0.png
(오른손 좌표계 시스템의 x-y-z 축을 사용하고 있습니다.)

이때 점 C와 점 A가 이루는 각도는 어떻게 될까요? 간단하게 점과 점의 위치를 빼서 벡터를 만들고,

점 C와 카메라의 벡터 = 점 C - 점 A
                    = (-1.4, -2.9, -5)

그 벡터가 이루는 각을 3차원에 따라 각 축 별로 3개의 각도를 구할 수 있습니다.

  • x-축을 기준으로 y-z 평면의 각
  • y-축을 기준으로 x-z 평면의 각
  • z-축을 기준으로 x-y 평면의 각

역시 시각화를 해보는 게 좋겠지요? ^^ GeoGebra 앱에서 "Home" 모양의 아이콘을 누르면,

angle_between_two_1.png

차례대로 "y축을 기준으로 x-z 평면", "z축을 기준으로 x-y 평면", "x축을 기준으로 y-z 평면" 상에서의 물체를 볼 수 있는 기능이 제공됩니다.

자... 멋진 툴이 있으니, 그럼 우선 첫 번째 아이콘인 "y축을 기준으로 x-z 평면"을 다음과 같이 볼 수 있습니다. ^^

angle_between_two_2_y.png

보는 바와 같이 x-z 평면에서 벡터가 이루는 각을 쉽게 확인할 수 있습니다. 점 A에서 x-축으로 수선의 발을 그렸을 때,

angle_between_two_3.png

직각 삼각형이 되고 이때 우리가 아는 벡터 A의 x, z 성분의 값으로 인해 아크 탄젠트 함수를 사용하면 점 A에서 이루는 각도를 구할 수 있습니다.

각 A = arc_tangent(vx, vz);

C# 코드로 구해 보면 다음과 같습니다.

Vector3 v3 = new Vector3(-1.4f, -2.9f, -5f);

{
    double yAngle = Math.Atan2(v3.X, v3.Z);
    Console.WriteLine(RadianToDegree(yAngle));
}

실행해 보면, -164.357753796137도가 나오는데, 벡터가 음의 방향이어서 그런 것일 뿐 180도를 빼면 약 15.6도가 나옵니다. 동일한 각도를 Geogebra 기하를 이용해서도 구해 볼까요? ^^

2차원 좌표계에서 x, z의 성분으로 점을 표시한 후 그와 연결한 벡터를 그리고 그 사잇각을 다음과 같이 구할 수 있습니다.

angle_between_two_4.png

잘 맞아 들어가는군요. ^^




마찬가지 방식으로 "z축을 기준으로 x-y 평면"과,

angle_between_two_2_z.png

"x축을 기준으로 y-z 평면" 상의 모습을 확인하며,

angle_between_two_2_x.png

각도를 구해 보면 이렇습니다.

Vector3 v3 = new Vector3(-1.4f, -2.9f, -5f);
Console.WriteLine("xAngle");
{
    double xAngle = Math.Atan2(v3.Y, v3.Z);
    Console.WriteLine(RadianToDegree(xAngle));
}

Console.WriteLine("yAngle");
{
    double yAngle = Math.Atan2(v3.X, v3.Z);
    Console.WriteLine(RadianToDegree(yAngle));
}

Console.WriteLine("zAngle");
{
    double zAngle = Math.Atan2(v3.Y, v3.X);
    Console.WriteLine(RadianToDegree(zAngle));
}

/*
출력 결과

xAngle
-149.886266031276
yAngle
-164.357753796137
zAngle
-115.769326504636
*/

(첨부 파일은 이 글에서 예제로 사용한 geogebra 파일입니다.)




참고로, 2개의 벡터가 이루는 각은 아크코사인을 이용해 구할 수 있습니다.

vector v1 = ...;
vector v2 = ...;

vector nv1 = normalize(v1);
vector nv2 = normalize(v2);

float angle = acos(mul(nv1, nv2));

일반적으로 acos의 정의역이 -1 ~ 1이기 때문에 정규화된 벡터의 내적 연산으로 NaN 값을 반환하는 경우는 없습니다. 문제는 0 벡터인 경우 normalize 하는 과정에서 NaN이 나온다는 것입니다.

vector v = vector(0, 0, 0, 0);
vector normal = normalize(v); // normal == NaN

왜냐하면 정규화라는 것이 벡터 크기로 나누는 것인데,

${
\hat v = \left ( \frac{ v_x }{ \Vert v \Vert }, \frac{ v_y }{ \Vert v \Vert }, \frac{ v_z }{ \Vert v \Vert } \right )
}$

분모가 0이 되므로 normalize의 결과가 NaN이 나옵니다. 이 때문에 mul 연산도 NaN이 되고, acos까지 NaN으로 끝납니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 8/1/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  5  [6]  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13829정성태11/25/20246693스크립트: 67. 파이썬 - Windows 버전에서 함께 설치되는 py.exe
13828정성태11/25/20245182개발 환경 구성: 735. Azure - 압축 파일을 이용한 web app 배포 시 디렉터리 구분이 안 되는 문제파일 다운로드1
13827정성태11/25/20246011Windows: 273. Windows 환경의 파일 압축 방법 (tar, Compress-Archive)
13826정성태11/21/20246393닷넷: 2313. C# - (비밀번호 등의) Console로부터 입력받을 때 문자열 출력 숨기기(echo 끄기)파일 다운로드1
13825정성태11/21/20247050Linux: 110. eBPF / bpf2go - BPF_RINGBUF_OUTPUT / BPF_MAP_TYPE_RINGBUF 사용법
13824정성태11/20/20245426Linux: 109. eBPF / bpf2go - BPF_PERF_OUTPUT / BPF_MAP_TYPE_PERF_EVENT_ARRAY 사용법
13823정성태11/20/20246616개발 환경 구성: 734. Ubuntu에 docker, kubernetes (k3s) 설치
13822정성태11/20/20246494개발 환경 구성: 733. Windbg - VirtualBox VM의 커널 디버거 연결 시 COM 포트가 없는 경우
13821정성태11/18/20246100Linux: 108. Linux와 Windows의 프로세스/스레드 ID 관리 방식
13820정성태11/18/20246556VS.NET IDE: 195. Visual C++ - C# 프로젝트처럼 CopyToOutputDirectory 항목을 추가하는 방법
13819정성태11/15/20245131Linux: 107. eBPF - libbpf CO-RE의 CONFIG_DEBUG_INFO_BTF 빌드 여부에 대한 의존성
13818정성태11/15/20246680Windows: 272. Windows 11 24H2 - sudo 추가
13817정성태11/14/20245897Linux: 106. eBPF / bpf2go - (BPF_MAP_TYPE_HASH) Map을 이용한 전역 변수 구현
13816정성태11/14/20246852닷넷: 2312. C#, C++ - Windows / Linux 환경의 Thread Name 설정파일 다운로드1
13815정성태11/13/20245469Linux: 105. eBPF - bpf2go에서 전역 변수 설정 방법
13814정성태11/13/20246115닷넷: 2311. C# - Windows / Linux 환경에서 Native Thread ID 가져오기파일 다운로드1
13813정성태11/12/20246663닷넷: 2310. .NET의 Rune 타입과 emoji 표현파일 다운로드1
13812정성태11/11/202410269오류 유형: 933. Active Directory - The forest functional level is not supported.
13811정성태11/11/20245855Linux: 104. Linux - COLUMNS 환경변수가 언제나 80으로 설정되는 환경
13810정성태11/10/20246881Linux: 103. eBPF (bpf2go) - Tracepoint를 이용한 트레이스 (BPF_PROG_TYPE_TRACEPOINT)
13809정성태11/10/20246513Windows: 271. 윈도우 서버 2025 마이그레이션
13808정성태11/9/20246827오류 유형: 932. Linux - 커널 업그레이드 후 "error: bad shim signature" 오류 발생
13807정성태11/9/20245684Linux: 102. Linux - 커널 이미지 파일 서명 (Ubuntu 환경)
13806정성태11/8/20245863Windows: 270. 어댑터 상세 정보(Network Connection Details) 창의 내용이 비어 있는 경우
13805정성태11/8/20245471오류 유형: 931. Active Directory의 adprep 또는 복제가 안 되는 경우
13804정성태11/7/20247065Linux: 101. eBPF 함수의 인자를 다루는 방법
1  2  3  4  5  [6]  7  8  9  10  11  12  13  14  15  ...