Microsoft MVP성태의 닷넷 이야기
Graphics: 19. Unity로 실습하는 Shader (10) - 빌보드 구현 [링크 복사], [링크+제목 복사],
조회: 26132
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 13개 있습니다.)
Graphics: 2. Unity로 실습하는 Shader
; https://www.sysnet.pe.kr/2/0/11607

Graphics: 3. Unity로 실습하는 Shader (1) - 컬러 반전 및 상하/좌우 뒤집기
; https://www.sysnet.pe.kr/2/0/11608

Graphics: 4. Unity로 실습하는 Shader (2) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model)
; https://www.sysnet.pe.kr/2/0/11609

Graphics: 5. Unity로 실습하는 Shader (3) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model) + Texture
; https://www.sysnet.pe.kr/2/0/11610

Graphics: 6. Unity로 실습하는 Shader (4) - 퐁 셰이딩(phong shading)
; https://www.sysnet.pe.kr/2/0/11611

Graphics: 7. Unity로 실습하는 Shader (5) - Flat Shading
; https://www.sysnet.pe.kr/2/0/11613

Graphics: 8. Unity Shader - Texture의 UV 좌표에 대응하는 Pixel 좌표
; https://www.sysnet.pe.kr/2/0/11614

Graphics: 9. Unity Shader - 전역 변수의 초기화
; https://www.sysnet.pe.kr/2/0/11616

Graphics: 10. Unity로 실습하는 Shader (6) - Mosaic Shading
; https://www.sysnet.pe.kr/2/0/11619

Graphics: 11. Unity로 실습하는 Shader (7) - Blur (평균값, 가우스, 중간값) 필터
; https://www.sysnet.pe.kr/2/0/11620

Graphics: 12. Unity로 실습하는 Shader (8) - 다중 패스(Multi-Pass Shader)
; https://www.sysnet.pe.kr/2/0/11628

Graphics: 13. Unity로 실습하는 Shader (9) - 투명 배경이 있는 텍스처 입히기
; https://www.sysnet.pe.kr/2/0/11631

Graphics: 19. Unity로 실습하는 Shader (10) - 빌보드 구현
; https://www.sysnet.pe.kr/2/0/11641




Unity로 실습하는 Shader (10) - 빌보드 구현

지난번에 만든 shader에 이어서 살펴보겠습니다.

Unity로 실습하는 Shader (9) - 투명 배경이 있는 텍스처 입히기
; https://www.sysnet.pe.kr/2/0/11631

위의 작업에 따라 Unity 세계에 배치한 나무 한 그루가 있을 때 카메라를 움직여 나무가 위치한 곳의 옆으로 이동해 보겠습니다. 이를 위해 Unity에서 화살표 키를 이용해 카메라를 움직일 수 있도록 다음과 같은 작업을 해둡니다.

C# - Unity에서 캐릭터가 바라보는 방향을 기준으로 카메라의 위치 이동 및 회전하는 방법
; https://www.sysnet.pe.kr/2/0/11632

따라서, 카메라를 적절하게 나무 옆으로 이동해 바라보면,

billboard_0.png

나무가 얇은 판 위에 그려진 것에 불과하기 때문에 다음과 같이 보이게 됩니다.

billboard_1.png

이럴 때, 만약 Plane 3D 객체를 카메라 방향으로 회전시켜주면 어떨까요?

billboard_2.png

그럼, 사용자가 y-축을 기준으로 x-z 평면에서 카메라를 이리저리 돌리며 봐도 다음과 같이 나무로 볼 수 있게 됩니다.

billboard_3.png

바로 이렇게 구현한 객체를 "빌보드(billboard)"라고 합니다.




그럼, 이 빌보드를 shader로 구현해 볼까요? ^^

어차피, x-z 평면에서 돌아다니는 거라면 y-축에 대해 카메라와 물체가 이루는 각을 구하고 그만큼 회전을 시켜주면 됩니다. 3차원 상에서의 두 점이 이루는 각은 이미 다음의 글에서 아크탄젠트를 이용해 구하는 방법을 설명했습니다.

3D 공간에서 두 점이 이루는 각도 구하기
; https://www.sysnet.pe.kr/2/0/11636

그리고 shader 내에서 World Matrix를 구하는 것도 설명했으니,

Unity - shader의 World matrix(unity_ObjectToWorld)를 수작업으로 구성
; https://www.sysnet.pe.kr/2/0/11633

Unity - World matrix(unity_ObjectToWorld)로부터 TRS(이동/회전/크기) 행렬로 복원하는 방법
; https://www.sysnet.pe.kr/2/0/11637

Unity - World matrix(unity_ObjectToWorld)로부터 Position, Rotation, Scale 값을 복원하는 방법
; https://www.sysnet.pe.kr/2/0/11640

이것을 이용하면 다음과 같이 shader 코드를 작성할 수 있습니다.

v2f vert(appdata v)
{
    v2f o;

    float4x4 scaleMatrix; // Scale 행렬

    vector sx = vector(unity_ObjectToWorld._m00, unity_ObjectToWorld._m10, unity_ObjectToWorld._m20, 0);
    vector sy = vector(unity_ObjectToWorld._m01, unity_ObjectToWorld._m11, unity_ObjectToWorld._m21, 0);
    vector sz = vector(unity_ObjectToWorld._m02, unity_ObjectToWorld._m12, unity_ObjectToWorld._m22, 0);

    float scaleX = length(sx);
    float scaleY = length(sy);
    float scaleZ = length(sz);

    scaleMatrix[0] = float4(scaleX, 0, 0, 0);
    scaleMatrix[1] = float4(0, scaleY, 0, 0);
    scaleMatrix[2] = float4(0, 0, scaleZ, 0);
    scaleMatrix[3] = float4(0, 0, 0, 1);

    float4 pos = v.vertex;

    float4 worldPos = float4(mul(unity_ObjectToWorld, float4(0, 0, 0, 1)).xyz, 0);
    float4 cameraPos = float4(_WorldSpaceCameraPos.xyz, 0);

    vector cameraDir = cameraPos - worldPos;

    float xAngle = atan2(cameraDir.z, cameraDir.y);
    float yAngle = atan2(cameraDir.z, cameraDir.x);
    float zAngle = atan2(cameraDir.x, cameraDir.y);

    xAngle = -radians(90);
    yAngle = -(radians(90) + yAngle);
    zAngle = 0;

    float4x4 rotationMatrix = GetRotationMatrix(xAngle, yAngle, 0);

    float4x4 moveMatrix;
    moveMatrix[0] = float4(1, 0, 0, unity_ObjectToWorld._m03);
    moveMatrix[1] = float4(0, 1, 0, unity_ObjectToWorld._m13);
    moveMatrix[2] = float4(0, 0, 1, unity_ObjectToWorld._m23);
    moveMatrix[3] = float4(0, 0, 0, 1);

    float4x4 transformMatrix = mul(mul(moveMatrix, rotationMatrix), scaleMatrix);

    pos = mul(transformMatrix, pos);

    o.pos = mul(UNITY_MATRIX_VP, pos);
    o.uv = TRANSFORM_TEX(v.uv, _MainTex);

    return o;
}

지난 글과 달라진 점은, rotationMatrix를 Unity 에디터의 Transform에서 설정한 값을 쓰지 않고 직접 설정했다는 점입니다.

float4 pos = v.vertex;

float4 worldPos = float4(mul(unity_ObjectToWorld, float4(0, 0, 0, 1)).xyz, 0);
float4 cameraPos = float4(_WorldSpaceCameraPos.xyz, 0);

vector cameraDir = cameraPos - worldPos;

float xAngle = atan2(cameraDir.z, cameraDir.y);
float yAngle = atan2(cameraDir.z, cameraDir.x);
float zAngle = atan2(cameraDir.x, cameraDir.y);

xAngle = -radians(90);
yAngle = -(radians(90) + yAngle);
zAngle = 0;

float4x4 rotationMatrix = GetRotationMatrix(xAngle, yAngle, 0);

왜냐하면, 보통 빌보드로 사용될 mesh는 Plane 객체이기 때문이고 이 객체는 생성 시 x-z 평면 상에 누워있기 때문입니다. 따라서, 이 Plane 객체를 세우기 위해 xAngle은 무조건 -90도를 설정했습니다.

xAngle = -radians(90);

y-축의 변화는 카메라와 물체가 이루는 각에 따라 달라지므로 두 점 간의 각도를 구하고 이에 따라 반응하도록 yAngle을 설정합니다.

yAngle = -(radians(90) + yAngle);

마지막으로 z-축은 빌보드가 어차피 3차원 이미지를 렌더링하는 용도는 아니므로 x-z 평면 상에서만 잘 동작하면 되기 때문에 0으로 설정합니다.

(첨부 파일은 빌보드 구현 shader 전체 코드입니다.)




shader뿐만 아니라 C# 스크립트로도 빌보드를 구현할 수 있습니다. 나무 객체에 스크립트를 얹고 카메라가 있는 방향으로 회전을 시켜주면 되는데, 다음의 글은 이에 대해 설명하고 있습니다.

유니티3D, 게임 오브젝트를 특정 대상을 바라보게 하기
; http://legacy.tistory.com/81

처음부터 만들어 볼까요? ^^

우선, Plane 3D 객체를 놓고 texture를 보여줄 수 있는 shader를 얹으면 지난 글에 설명한 것처럼 바닥에 누워있는 평면이 생깁니다. 어차피 스크립트를 통해 회전시킬 것이기 때문에 이번에는 지난번처럼 material의 Texture 설정이나 x-축을 기준으로 한 회전을 미리 해둘 필요가 없습니다. 그다음 아래의 스크립트를 적용하면,

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class rotatePlane : MonoBehaviour
{
    public Transform Camera;

    void Start()
    {
    }

    void Update()
    {
        if (Camera != null)
        {
            this.transform.LookAt(Camera);
        }
    }
}

여전히 누워 있는 상태는 변함이 없지만 이번에는 지난 글과는 다르게 누워 있는 나무의 방향이 반대입니다.

[그림: 좌측 - LookAt 적용 후, 우측 - LookAt 적용 전]
billboard_4.png

이 때문에 나무를 세우기 위해서 전에는 -90도를 했지만, 이번에는 +90도를 하면 됩니다.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class rotatePlane : MonoBehaviour
{
    public Transform Camera;

    void Start()
    {
    }

    void Update()
    {
        if (Camera != null)
        {
            this.transform.LookAt(Camera);
            this.transform.Rotate(Vector3.right * 90);
        }
    }
}

이렇게 하고 실행하면 마치 달이 지구를 바라보듯이 해당 물체는 카메라의 움직임에 따라 언제나 보이는 위치로 회전을 하게 됩니다. 위의 방법에서는 z-축을 기반으로 xy 평면 상에서 카메라를 움직여도 나무가 서 있는 효과가 납니다. 하지만 그렇다고 해서 이것이 2차원 평면이 가진 빌보드의 제약을 해결한 것은 아닙니다. 일례로, y-축으로 카메라를 이동해 하늘에서 바닥을 내려다본다고 했을 때 나무가 도로와 수직으로 서 있는 모습이 아닌, 도로와 평행으로 깔려 있는 모습으로 렌더링되기 때문입니다. 게다가, y-축의 정점을 지나는 경우 나무가 거꾸로 회전하는 변화도 거슬립니다. 결국, 빌보드는 모든 3차원 공간에서의 카메라 이동 용으로는 부적합하다는 것을 인정해야 합니다.




검색해 보면, 빌보드를 색다른 방식으로 구현한 shader 소스 코드를 찾을 수 있습니다.

kaiware007/billboard.shader 
; https://gist.github.com/kaiware007/8ebad2d28638ff83b6b74970a4f70c9a

v2f vert (appdata v)
{
    v2f o;
    o.pos = UnityObjectToClipPos(v.vertex);
    o.uv = v.uv;

    // billboard mesh towards camera
    float3 vpos = mul((float3x3)unity_ObjectToWorld, v.vertex.xyz);

    float4 worldCoord = float4(unity_ObjectToWorld._m03, unity_ObjectToWorld._m13, unity_ObjectToWorld._m23, 1);
    float4 viewPos = mul(UNITY_MATRIX_V, worldCoord) + float4(vpos, 0);
    float4 outPos = mul(UNITY_MATRIX_P, viewPos);

    o.pos = outPos;

    UNITY_TRANSFER_FOG(o,o.vertex);
    return o;
}

분석해 보면 이렇습니다. 아래의 연산을 통해 Unity Editor의 Inspector 창에 설정된 Rotation, Scale 관련한 행렬을 분리해,

float3x3 rsMatrix = (float3x3)unity_ObjectToWorld;

현재 vertex의 xyz 값을 곱하면서 위치 이동 없이 회전과 크기만 변한 상태의 vertex 위치를 구해둡니다.

float3 vpos = mul(rsMatrix, v.vertex.xyz);

그다음 unity_ObjectToWorld로부터 Position 좌표를 가져오고 있지만,

float4 worldCoord = float4(unity_ObjectToWorld._m03, unity_ObjectToWorld._m13, unity_ObjectToWorld._m23, 1);

사실 위의 코드는 다음과 같이 풀어서 이해할 수 있습니다.

float4x4 worldMatrix;
worldMatrix[0] = float4(1, 0, 0, unity_ObjectToWorld._m03);
worldMatrix[1] = float4(0, 1, 0, unity_ObjectToWorld._m13);
worldMatrix[2] = float4(0, 0, 1, unity_ObjectToWorld._m23);
worldMatrix[3] = float4(0, 0, 0, 1);

float4 objectCenterPosition = float4(0, 0, 0, 1);           // 모델의 중심 값을 기준으로,
float4 worldCoord = mul(worldMatrix, objectCenterPosition); // 위치 이동한 좌표를 구하고,

즉, 모델의 중심 좌표에 대해 World 좌표계에 이동한 위치를 구한 것입니다. 이렇게 위치 이동한 것을 카메라 좌표계 기준으로 옮겨 준 다음,

float4 viewCenterPos = mul(UNITY_MATRIX_V, worldCoord);

카메라 좌표계에서의 중심점을 기준으로 회전/크기 변경된 vertex의 위치를 오프셋 연산합니다.

float4 viewPos = viewCenterPos + float4(vpos, 0);

따라서, 원래 Unity Editor의 Scene 화면에서 보이는 모습 그대로 카메라의 이동에 관계없이 그대로 보이게 되는 것입니다. 마지막으로 2차원 화면에 투영해 주는 것으로 끝!

float4 outPos = mul(UNITY_MATRIX_P, viewPos);

따라서 이 방법은 카메라의 좌표에 따라 회전하지 않기 때문에 스크립트로 LookAt + Rotate한 것과 비교해 다른 동작을 합니다. 아래의 화면을 보면,

billboard_5.png

좌측의 나무는 shader에서 한 것으로 카메라 위치가 바뀌어도 한결같이 정면을 바라보며 있습니다. 하지만 우측의 나무는 LookAt + Rotate한 것이기 때문에 회전을 하게 되고 나무의 밑동을 보면 방향을 틀은 것을 볼 수 있습니다. 실제로 2개의 방식을 혼용하면 이질적으로 동작하므로 하나로 통일하는 것이 좋습니다.




참고로, shader의 내장 변수 중 UNITY_MATRIX_IT_MV의 구성이 재미있습니다.

Built-in shader variables
; https://docs.unity3d.com/Manual/SL-UnityShaderVariables.html

UNITY_MATRIX_IT_MV - Inverse transpose of model * view matrix.

이 행렬로부터 카메라의 Up 벡터와 카메라의 시선이 향하는 방향 벡터를 다음과 같이 구할 수 있습니다.

Camera Up vector in vertex shader.
; https://forum.unity.com/threads/camera-up-vector-in-vertex-shader.144635/

float3 upvec = UNITY_MATRIX_IT_MV[1].xyz;
float3 viewDir = UNITY_MATRIX_IT_MV[2].xyz;




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 8/3/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2024-07-30 08시45분
빌보드(Billboard)를 만들어 봅시다 1부. 변환 행렬의 비밀
; https://chulin28ho.tistory.com/863

빌보드(Billboard)를 만들어 봅시다 2부. 이제 진짜 만들어 봅시다
; https://chulin28ho.tistory.com/864

빌보드(Billboard)를 만들어 봅시다 3부. 마무리해 봅시다 / HLSL버전
; https://chulin28ho.tistory.com/865
정성태

... 136  137  138  139  140  141  142  143  144  145  146  147  148  149  [150]  ...
NoWriterDateCnt.TitleFile(s)
1303정성태6/26/201227400개발 환경 구성: 152. sysnet DB를 SQL Azure 데이터베이스로 마이그레이션
1302정성태6/25/201229429개발 환경 구성: 151. Azure 웹 사이트에 사용자 도메인 네임 연결하는 방법
1301정성태6/20/201225764오류 유형: 156. KB2667402 윈도우 업데이트 실패 및 마이크로소프트 Answers 웹 사이트 대응
1300정성태6/20/201231771.NET Framework: 329. C# - Rabin-Miller 소수 생성방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자 [1]파일 다운로드2
1299정성태6/18/201232888제니퍼 .NET: 21. 제니퍼 닷넷 - Ninject DI 프레임워크의 성능 분석 [2]파일 다운로드2
1298정성태6/14/201234405VS.NET IDE: 72. Visual Studio에서 pfx 파일로 서명한 경우, 암호는 어디에 저장될까? [2]
1297정성태6/12/201231053VC++: 63. 다른 프로세스에 환경 변수 설정하는 방법파일 다운로드1
1296정성태6/5/201227682.NET Framework: 328. 해당 DLL이 Managed인지 / Unmanaged인지 확인하는 방법 - 두 번째 이야기 [4]파일 다운로드1
1295정성태6/5/201225083.NET Framework: 327. RSAParameters와 System.Numerics.BigInteger 이야기파일 다운로드1
1294정성태5/27/201248527.NET Framework: 326. 유니코드와 한글 - 유니코드와 닷넷을 이용한 한글 처리 [7]파일 다운로드2
1293정성태5/24/201229774.NET Framework: 325. System.Drawing.Bitmap 데이터를 Parallel.For로 처리하는 방법 [2]파일 다운로드1
1292정성태5/24/201223754.NET Framework: 324. First-chance exception에 대해 조건에 따라 디버거가 멈추게 할 수는 없을까? [1]파일 다운로드1
1291정성태5/23/201230276VC++: 62. 배열 초기화를 위한 기계어 코드 확인 [2]
1290정성태5/18/201235081.NET Framework: 323. 관리자 권한이 필요한 작업을 COM+에 대행 [7]파일 다운로드1
1289정성태5/17/201239239.NET Framework: 322. regsvcs.exe로 어셈블리 등록 시 시스템 변경 사항 [5]파일 다운로드2
1288정성태5/17/201226463.NET Framework: 321. regasm.exe로 어셈블리 등록 시 시스템 변경 사항 (3) - Type Library파일 다운로드1
1287정성태5/17/201229299.NET Framework: 320. regasm.exe로 어셈블리 등록 시 시스템 변경 사항 (2) - .NET 4.0 + .NET 2.0 [2]
1286정성태5/17/201238221.NET Framework: 319. regasm.exe로 어셈블리 등록 시 시스템 변경 사항 (1) - .NET 2.0 + x86/x64/AnyCPU [5]
1285정성태5/16/201233264.NET Framework: 318. gacutil.exe로 어셈블리 등록 시 시스템 변경 사항파일 다운로드1
1284정성태5/15/201225695오류 유형: 155. Windows Phone 연결 상태에서 DRIVER POWER STATE FAILURE 블루 스크린 뜨는 현상
1283정성태5/12/201233307.NET Framework: 317. C# 관점에서의 Observer 패턴 구현 [1]파일 다운로드1
1282정성태5/12/201226106Phone: 6. Windows Phone 7 Silverlight에서 Google Map 사용하는 방법 [3]파일 다운로드1
1281정성태5/9/201233190.NET Framework: 316. WPF/Silverlight의 그래픽 단위와 Anti-aliasing 처리를 이해하자 [1]파일 다운로드1
1280정성태5/9/201226157오류 유형: 154. Could not load type 'System.ServiceModel.Activation.HttpModule' from assembly 'System.ServiceModel, ...'.
1279정성태5/9/201224918.NET Framework: 315. 해당 DLL이 Managed인지 / Unmanaged인지 확인하는 방법 [1]파일 다운로드1
1278정성태5/8/201226147오류 유형: 153. Visual Studio 디버깅 - Unable to break execution. This process is not currently executing the type of code that you selected to debug.
... 136  137  138  139  140  141  142  143  144  145  146  147  148  149  [150]  ...