Microsoft MVP성태의 닷넷 이야기
사물인터넷: 38. 아두이노에서 적외선 수신기 기본 사용법 [링크 복사], [링크+제목 복사]
조회: 4593
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

아두이노에서 적외선 수신기 기본 사용법

우선 이 글에서 사용한 적외선 수신에 대한 부품 먼저 소개합니다.

Infrared_receiver.jpg

구매 링크는 다음과 같습니다.

아두이노 KY-022 적외선 센서 수신기 모듈(AS0150)
; http://arduinostory.com/goods/goods_view.php?goodsNo=1000000150

제조사: 애니벤더
원산지: 중국
사양:
    전압: 5V
    포트: 디지털 레벨
    전송 거리: 1~8m
    플랫폼: Arduino 마이크로 컨트롤러 
    크기: 가로 14mm x 세로 20mm x 높이 10mm

말도 안 된다고 생각하시겠지만 별도의 datasheet는 없었습니다. 그렇다면 도대체 어떤 핀이 어느 용도인지 어떻게 알아낼 수 있을까요? 다행히 검색을 해보면,

KY-022 Infrared IR Sensor Receiver Module For Arduino
; https://forum.banggood.com/forum-topic-28885.html

다음과 같은 그림으로 쉽게 확인할 수 있습니다.

KY_022_Arduino_ir.png

또는 아래의 제품과 아주 동일한 것 같지는 않은데,

KY-022 Infrared Receiver Module
; https://arduinomodules.info/ky-022-infrared-receiver-module/

Operating Voltage 2.7 to 5.5V 
Operating Current 0.4 to 1.5mA 
Reception Distance 18m 
Reception Angle ±45°
Carrier Frequency 38KHz 
Low Level Voltage 0.4V 
High Level Voltage 4.5V 
Ambient Light Filter up to 500LUX 

핀에 대한 정보가 다음과 같이 있습니다.

KY-012 Arduino
S Signal
Middle +5V
- GND

실제로 제가 구매한 IR 수신기 역시 위와 같이 보드에 좌측으로 "-" 표시와 우측으로 "S"가 있었고 테스트 결과 그 핀 배열로 동작했습니다. 일단 이렇게 핀만 확인하면 해당 제품에는 저항이 포함되어 있기 때문에 별도의 부가 저항 없이 곧바로 다음과 같이 간단한 회로 구성으로 사용할 수 있습니다.

ir_recv_1.png

남은 작업은 코딩인데요, Arduino IDE에서 "Sketch" / "Include Library" / "Manager Libraries..."를 이용해 "IRRemote"를 검색하면 "shirriff"라는 사람이 만든 모듈을 구할 수 있습니다. 그것을 추가하고 github에 공개된 원본 소스와 예제 코드에 따라,

z3t0/Arduino-IRremote 
; https://github.com/z3t0/Arduino-IRremote

원하는 작업을 추가합니다. 제 경우에 2번 핀에 연결했기 때문에 다음과 같이 초기화하고,

#include <boarddefs.h>
#include <IRremote.h>
#include <IRremoteInt.h>
#include <ir_Lego_PF_BitStreamEncoder.h>

int RECV_PIN = 2;
IRrecv irrecv(RECV_PIN);
decode_results results;

void setup() {
  Serial.begin(9600);
  irrecv.enableIRIn(); // Start the receiver
}

loop에서는 https://github.com/z3t0/Arduino-IRremote 코드에서 구한 dump 함수를 이용해 적외선 신호가 수신될 때마다 그 값을 Serial 출력에 나오도록 만들었습니다.

void dump(decode_results *results) {
  // Dumps out the decode_results structure.
  // Call this after IRrecv::decode()
  int count = results->rawlen;
  if (results->decode_type == UNKNOWN) {
    Serial.print("Unknown encoding: ");
  }
  else if (results->decode_type == NEC) {
    Serial.print("Decoded NEC: ");
  }
  else if (results->decode_type == SONY) {
    Serial.print("Decoded SONY: ");
  }
  else if (results->decode_type == RC5) {
    Serial.print("Decoded RC5: ");
  }
  else if (results->decode_type == RC6) {
    Serial.print("Decoded RC6: ");
  }
  else if (results->decode_type == PANASONIC) {
    Serial.print("Decoded PANASONIC - Address: ");
    Serial.print(results->address, HEX);
    Serial.print(" Value: ");
  }
  else if (results->decode_type == LG) {
    Serial.print("Decoded LG: ");
  }
  else if (results->decode_type == JVC) {
    Serial.print("Decoded JVC: ");
  }
  else if (results->decode_type == AIWA_RC_T501) {
    Serial.print("Decoded AIWA RC T501: ");
  }
  else if (results->decode_type == WHYNTER) {
    Serial.print("Decoded Whynter: ");
  }
  Serial.print(results->value, HEX);
  Serial.print(" (");
  Serial.print(results->bits, DEC);
  Serial.println(" bits)");
  Serial.print("Raw (");
  Serial.print(count, DEC);
  Serial.print("): ");

  for (int i = 1; i < count; i++) {
    if (i & 1) {
      Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
    }
    else {
      Serial.write('-');
      Serial.print((unsigned long) results->rawbuf[i]*USECPERTICK, DEC);
    }
    Serial.print(" ");
  }
  Serial.println();
}

void loop() {
  if (irrecv.decode(&results) == true)
  {
    Serial.println(results.value, HEX);
    dump(&results);
    irrecv.resume();
    return;                  
  }

  delay(100);
}

테스트를 위해 ^^ 우리 집에 있는 형광등 On/Off 리모컨을 4번 써서 수신하니 각각 다음의 데이터가 들어왔습니다.

33E09F86
Unknown encoding: 33E09F86 (32 bits)
Raw (26): 3550 -1750 600 -400 600 -1800 550 -450 600 -450 600 -1800 550 -450 600 -450 600 -500 600 -450 600 -400 650 -400 550 

33E09F86
Unknown encoding: 33E09F86 (32 bits)
Raw (26): 3550 -1750 600 -400 600 -1800 550 -450 600 -450 600 -1800 550 -450 600 -450 600 -450 650 -450 550 -450 600 -450 550 

33E09F86
Unknown encoding: 33E09F86 (32 bits)
Raw (26): 3600 -1700 650 -400 600 -1750 600 -400 600 -500 600 -1750 600 -400 650 -400 600 -500 600 -450 600 -450 600 -400 600 

33E09F86
Unknown encoding: 33E09F86 (32 bits)
Raw (26): 3600 -1750 600 -400 600 -1750 600 -400 650 -450 600 -1750 600 -400 650 -400 600 -500 600 -450 600 -450 600 -400 600 

보는 바와 같이 매번 동일한 데이터가 들어오진 않습니다. 그래도 크게 상관은 없고 저 중에 하나를 뽑아서 IR 송신기로 그대로 보내기만 하면 동작합니다. (송신에 대해서는 다음 글에서 다룹니다. ^^)

첨부 파일은 이 글의 전체 소스 코드와 회로 그림에 대한 원본 fzz 파일이 들어 있습니다. 또한 아래는 KY-022 Infrared Receiver Module에 대한 Fritzing 부품 파일입니다.

KY-022 Infrared Receiver Module Zip File
; https://arduinomodules.info/download/ky-022-infrared-receiver-module-zip-file/




참고로, 제가 가진 IR Receiver 중에는 이 글에서 소개한 보드 일체형 제품이 아닌, 아래와 같이 단지 핀 3개만을 가진 IR Receiver 단품도 있습니다.

ir_recv_3.png

위와 같은 단품을 쓸 때는 이 글에서 설명한 대로 회로를 구성하면 안 됩니다. 왜냐하면 보드의 경우에는 저항을 자체 포함해서 제공했으므로 상관이 없지만 위의 부품만을 연결할 때는 5V 입력 단자에 저항을 하나 연결하는 것이 좋습니다. 게다가 핀에 대한 연결도 바뀌는데요, 왜냐하면 원래 단품 IR Receiver가 위의 그림 기준으로 왼쪽부터 Signal - GND - Vcc이기 때문입니다. (보드 일체형 제품의 경우에는 저 배열을 보드 상에서 바꿔 GND - Vcc - Signal로 제공하는 것입니다.)

그래서 튀어나온 면 기준으로 다음과 같이 회로를 구성해야 합니다.

ir_recv_4.png

Fritzing Parts - Homautomation
; http://www.homautomation.org/fritzing-parts/




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]


donaricano-btn



[최초 등록일: ]
[최종 수정일: 10/18/2018 ]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 쓴 사람
 




[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
12547정성태3/3/20219오류 유형: 699. 비주얼 스튜디오 - The 'CascadePackage' package did not load correctly.
12546정성태3/3/202135개발 환경 구성: 545. github workflow/actions에서 빌드시 snk 파일 다루는 방법 - Encrypted secrets
12545정성태3/2/2021100.NET Framework: 1025. 닷넷 5에 추가된 POH (Pinned Object Heap) [4]
12544정성태2/27/2021140.NET Framework: 1024. C# - Control의 Invalidate, Update, Refresh 차이점 [2]
12543정성태2/26/2021115VS.NET IDE: 1577. C# - 디자인 타임(design-time)과 런타임(runtime)의 코드 실행 구분
12542정성태3/3/2021164개발 환경 구성: 544. github repo의 Release 활성화 및 Actions를 이용한 자동화 방법
12541정성태2/18/2021218개발 환경 구성: 543. 애저듣보잡 - Github Workflow/Actions 소개
12540정성태2/17/2021206.NET Framework: 1023. C# - Win32 API에 대한 P/Invoke를 대신하는 Microsoft.Windows.CsWin32 패키지
12539정성태2/16/2021270Windows: 188. WM_TIMER의 동작 방식 개요파일 다운로드1
12538정성태2/16/2021318.NET Framework: 1022. C# - GC 힙이 아닌 Native 힙에 인스턴스 생성 - 0SuperComicLib.LowLevel 라이브러리 소개 [2]
12537정성태2/11/2021386.NET Framework: 1021. UI 요소의 접근은 반드시 그 UI를 만든 스레드에서! - 두 번째 이야기
12536정성태2/9/2021218개발 환경 구성: 542. BDP(Bandwidth-delay product)와 TCP Receive Window
12535정성태2/10/2021174개발 환경 구성: 541. Wireshark로 확인하는 LSO(Large Send Offload), RSC(Receive Segment Coalescing) 옵션
12534정성태2/17/2021188개발 환경 구성: 540. Wireshark + C/C++로 확인하는 TCP 연결에서의 closesocket 동작파일 다운로드1
12533정성태2/8/2021214개발 환경 구성: 539. Wireshark + C/C++로 확인하는 TCP 연결에서의 shutdown 동작파일 다운로드1
12532정성태2/6/2021210개발 환경 구성: 538. Wireshark + C#으로 확인하는 ReceiveBufferSize(SO_RCVBUF), SendBufferSize(SO_SNDBUF)
12531정성태2/5/2021169개발 환경 구성: 537. Wireshark + C#으로 확인하는 PSH flag와 Nagle 알고리듬파일 다운로드1
12530정성태2/5/2021236개발 환경 구성: 536. Wireshark + C#으로 확인하는 TCP 통신의 Receive Window
12529정성태2/4/2021177개발 환경 구성: 535. Wireshark + C#으로 확인하는 TCP 통신의 MIN RTO
12528정성태2/9/2021206개발 환경 구성: 534. Wireshark + C#으로 확인하는 TCP 통신의 MSS(Maximum Segment Size) - 윈도우 환경
12527정성태2/1/2021286개발 환경 구성: 533. Wireshark + C#으로 확인하는 TCP 통신의 MSS(Maximum Segment Size) - 리눅스 환경파일 다운로드1
12526정성태2/1/2021159개발 환경 구성: 532. Azure Devops의 파이프라인 빌드 시 snk 파일 다루는 방법 - Secure file
12525정성태2/1/2021135개발 환경 구성: 531. Azure Devops - 파이프라인 실행 시 빌드 이벤트를 생략하는 방법
12524정성태2/18/2021197개발 환경 구성: 530. 기존 github 프로젝트를 Azure Devops의 빌드 Pipeline에 연결하는 방법 [1]
12523정성태1/31/2021173개발 환경 구성: 529. 기존 github 프로젝트를 Azure Devops의 Board에 연결하는 방법
[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...