Microsoft MVP성태의 닷넷 이야기
개발 환경 구성: 440. C#, C++ - double의 Infinity, NaN 표현 방식 [링크 복사], [링크+제목 복사],
조회: 23247
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 8개 있습니다.)
.NET Framework: 539. C# - 부동 소수 계산 왜 이렇게 나오죠? (1)
; https://www.sysnet.pe.kr/2/0/10872

.NET Framework: 540. C# - 부동 소수 계산 왜 이렇게 나오죠? (2)
; https://www.sysnet.pe.kr/2/0/10873

.NET Framework: 608. double 값을 구할 때는 반드시 피연산자를 double로 형변환!
; https://www.sysnet.pe.kr/2/0/11055

개발 환경 구성: 440. C#, C++ - double의 Infinity, NaN 표현 방식
; https://www.sysnet.pe.kr/2/0/11896

기타: 85. 단정도/배정도 부동 소수점의 정밀도(Precision)에 따른 형변환 손실
; https://www.sysnet.pe.kr/2/0/13212

닷넷: 2257. C# - float (단정도 실수) 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13617

닷넷: 2258. C# - double (배정도 실수) 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13618

닷넷: 2259. C# - decimal 저장소의 비트 구조
; https://www.sysnet.pe.kr/2/0/13619




C#, C++ - double의 Infinity, NaN 표현 방식

Raymond Chen의 글에 따르면,

What does -1.#IND mean?: A survey of how the Visual C runtime library prints special floating point values
; https://blogs.msdn.microsoft.com/oldnewthing/20130221-00/?p=5183

다음과 같은 특별한 double 값들이 있습니다.

1#INF   Positive infinity 
-1#INF  Negative infinity 

1#SNAN  Positive signaling NaN 
-1#SNAN Negative signaling NaN 

1#QNAN  Positive quiet NaN 
-1#QNAN Negative quiet NaN 

1#IND   Positive indefinite NaN 
-1#IND  Negative indefinite NaN 

우선, 가장 쉬운 infinity에 대해 볼까요? ^^ 대표적인 재현 코드로는 0이 아닌 수를 0으로 나누는 것인데, 말 그대로 무한대의 값을 표현하는 것으로 부호에 따라 양의 무한대, 음의 무한대를 표현합니다. C#으로는 다음과 같이 표현할 수 있습니다.

using System;
using System.Runtime.CompilerServices;

class Program
{
    static unsafe void Main(string[] args)
    {
        WriteValue(double.PositiveInfinity, nameof(double.PositiveInfinity));
        WriteValue(double.NegativeInfinity, nameof(double.NegativeInfinity));
    }

    private static unsafe void WriteValue(double value, string title)
    {
        byte* pBytes = (byte*)&value;
        ulong* pLong = (ulong*)pBytes;
        Console.WriteLine(title + ": 0x" + (*pLong).ToString("x"));
    }
}

/* 출력 결과
PositiveInfinity: 0x7ff0000000000000
NegativeInfinity: 0xfff0000000000000
*/

이것을 double의 메모리 표현과 엮어 볼까요? ^^

/* C++ 코드 */
typedef union tagDoubleExt 
{
    struct
    {
        unsigned int mantisaPart2 : 32;
        unsigned int mantisaPart1 : 20;
        unsigned int exponent : 11;
        unsigned int sign : 1;
    } d;

    double value;

} DoubleExt;

Infinity의 경우에는 위의 코드에서 지수부 11비트가 모두 1 (0x7ff)이고 가수부 52비트가 모두 0인 값을 의미합니다.

exponent = 0x7ff
mantisa == 0

단지, sign == 0이면 PositiveInfinity, 1이면 NegativeInfinity입니다.




다음으로 NaN의 경우에는 제법 복잡합니다. 문서에 의하면, signaling, quiet, indefinite 유형으로 나뉘는데 C#의 경우에는 단일하게 무조건 double.NaN의 출력으로 처리하므로 다른 점을 찾을 수 없습니다. 대신 C/C++ 코드로는 확인할 수 있습니다.

C/C++의 경우에는 double (인 경우 8 바이트) 내용이 초기화되지 않은 메모리인 경우 말 그대로 적절한 IEEE 부동 소수점 포맷에 맞지 않는 값일 때 "Not a Number"라는 의미로 NaN 값을 가지게 됩니다. 물론 약간의 운이 따라야만 초기화되지 않은 double 값이 NaN 값을 가지게 되는데요, IEEE 표준에 의하면 NaN은 지수부 11비트가 전부 1(0x7ff)이면서 가수부는 최소 1비트 이상이 설정된 경우라고 합니다. 따라서 이 값은 Infinity와는 달리 가수부 경우의 수만큼 NaN 바이트 표현이 존재합니다. 가령, 아래의 경우 모두 NaN에 해당합니다.

#include <math.h>
#include <stdio.h>
#include <string>
#include <numeric>

using namespace std;

//double 형식의 메모리를 확인하기 위한 공용체 정의
typedef union tagDoubleExt 
{
    struct
    {
        unsigned int mantisaPart2 : 32;
        unsigned int mantisaPart1 : 20;
        unsigned int exponent : 11;
        unsigned int sign : 1;
    } d;

    unsigned char buf[8];
    double value;

} DoubleExt;

void print(string title, DoubleExt t)
{
    printf("[%s] %lf is \t", title.c_str(), t.value);

    // little endian
    for (int i = 7; i >= 0; i--)
    {
        printf("%02X ", t.buf[i]);
    }

    printf("\n");
}

int main(void)
{
    DoubleExt dblValue;

    {
        memset(&dblValue, 0, sizeof(dblValue));
        dblValue.d.exponent = 0x7ff;
        dblValue.d.mantisaPart1 = 101;
        print("sign = 0, exp = 0x7ff, mantisaPart1 = 101", dblValue);

        dblValue.d.sign = 1;
        print("sign = 1, exp = 0x7ff, mantisaPart1 = 101", dblValue);
    }

    {
        memset(&dblValue, 0, sizeof(dblValue));
        dblValue.d.exponent = 0x7ff;
        dblValue.d.mantisaPart2 = 1;
        print("sign = 0, exp = 0x7ff, mantisaPart2 = 1", dblValue);

        dblValue.d.sign = 1;
        print("sign = 1, exp = 0x7ff, mantisaPart2 = 1", dblValue);
    }

    return 0;
}

/* 출력 결과
[sign = 0, exp = 0x7ff, mantisaPart1 = 101] nan(snan) is        7F F0 00 65 00 00 00 00
[sign = 1, exp = 0x7ff, mantisaPart1 = 101] -nan(snan) is       FF F0 00 65 00 00 00 00
[sign = 0, exp = 0x7ff, mantisaPart2 = 1] nan(snan) is  7F F0 00 00 00 00 00 01
[sign = 1, exp = 0x7ff, mantisaPart2 = 1] -nan(snan) is         FF F0 00 00 00 00 00 01
*/

보는 바와 같이 출력값에서 "(snan)"이 나오는데 바로 이 경우가 부호에 따라 1#SNAN, -1#SNAN으로 표현되는 값입니다.

1#SNAN  Positive signaling NaN 
-1#SNAN Negative signaling NaN 

그다음 quiet NaN은 mantisa 가수부의 최상위 1비트가 1이면서 나머지 가수부가 최소 1 이상의 값인 경우에 해당합니다. 즉, 다음과 같이 double을 구성하면 재현할 수 있습니다.

/*
How to get the sign, mantissaand exponent of a floating point number
; https://stackoverflow.com/questions/15685181/how-to-get-the-sign-mantissa-and-exponent-of-a-floating-point-number
*/
typedef union tagDoubleExt 
{
    struct
    {
        unsigned int mantisaPart2 : 32;
        unsigned int mantisaPart1 : 19;
        unsigned int quiet_nan : 1;
        unsigned int exponent : 11;
        unsigned int sign : 1;
    } d;

    unsigned char buf[8];
    double value;

} DoubleExt;

{
    memset(&dblValue, 0, sizeof(dblValue));
    dblValue.d.exponent = 0x7ff;
    dblValue.d.quiet_nan = 1;
    dblValue.d.mantisaPart1 = 101;
    print("sign = 0, exp = 0x7ff, quiet=1, mantisaPart1 = 101", dblValue);

    dblValue.d.sign = 1;
    print("sign = 1, exp = 0x7ff, quiet=1, mantisaPart1 = 101", dblValue);
}

{
    memset(&dblValue, 0, sizeof(dblValue));
    dblValue.d.exponent = 0x7ff;
    dblValue.d.quiet_nan = 1;
    dblValue.d.mantisaPart2 = 1;
    print("sign = 0, exp = 0x7ff, quiet=1, mantisaPart2 = 1", dblValue);

    dblValue.d.sign = 1;
    print("sign = 1, exp = 0x7ff, quiet=1, mantisaPart2 = 1", dblValue);
}

/* 출력 결과
[sign = 0, exp = 0x7ff, quiet=1, mantisaPart1 = 101] nan is     7F F8 00 65 00 00 00 00
[sign = 1, exp = 0x7ff, quiet=1, mantisaPart1 = 101] -nan is    FF F8 00 65 00 00 00 00
[sign = 0, exp = 0x7ff, quiet=1, mantisaPart2 = 1] nan is       7F F8 00 00 00 00 00 01
[sign = 1, exp = 0x7ff, quiet=1, mantisaPart2 = 1] -nan is      FF F8 00 00 00 00 00 01
*/

그런데, 이번에는 보는 바와 같이 "quiet"를 식별하는 출력 없이 그냥 "nan"으로만 찍힙니다. 이제 남은 것은, "indefinite NaN"인데요.

1#IND   Positive indefinite NaN 
-1#IND  Negative indefinite NaN 

이것은 위의 quiet nan에서 quiet 비트를 제외한 다른 가수부의 값을 0으로 만들면 됩니다.

{
    memset(&dblValue, 0, sizeof(dblValue));
    dblValue.d.exponent = 0x7ff;
    dblValue.d.quiet_nan = 1;
    print("sign = 0, exp = 0x7ff, quiet=1, mantisa = 0", dblValue);

    dblValue.d.sign = 1;
    print("sign = 1, exp = 0x7ff, quiet=1, mantisa = 0", dblValue);
}

/* 출력 결과
[sign = 0, exp = 0x7ff, quiet=1, mantisa = 0] nan is    7F F8 00 00 00 00 00 00
[sign = 1, exp = 0x7ff, quiet=1, mantisa = 0] -nan(ind) is      FF F8 00 00 00 00 00 00
*/

단지, "-nan(ind)"의 경우에는 구분이 되는 반면 "nan(ind)"인 듯한 값은 C/C++도 그냥 "nan"으로 출력합니다. (혹시 "Positive indefinite NaN"에 관한 정확한 정보를 아시는 분은 덧글 부탁드립니다. ^^)

여기까지 해서 각각의 nan/inf에 대해 정리해 보면 다음과 같습니다.

1#INF   Positive infinity 
    exponent = 0x7ff
    mantisa == 0
    sign = 0
-1#INF  Negative infinity 
    exponent = 0x7ff
    mantisa == 0
    sign = 1

1#SNAN  Positive signaling NaN 
    exponent = 0x7ff
    mantisa == (1이 아닌 값)
    sign = 0
-1#SNAN Negative signaling NaN 
    exponent = 0x7ff
    mantisa == (1이 아닌 값)
    sign = 1

1#QNAN  Positive quiet NaN 
    exponent = 0x7ff
    mantisa == 최상위 비트가 1, 나머지 가수부에는 1이 아닌 값
    sign = 0
-1#QNAN Negative quiet NaN 
    exponent = 0x7ff
    mantisa == 최상위 비트가 1, 나머지 가수부에는 1이 아닌 값
    sign = 1

1#IND   Positive indefinite NaN 
    (출력은 안되지만, 아마도)
    exponent = 0x7ff
    mantisa == 최상위 비트만 1
    sign = 0
-1#IND  Negative indefinite NaN 
    exponent = 0x7ff
    mantisa == 최상위 비트만 1
    sign = 1




알아본 김에, C++의 NaN 관련 값/함수들을 알아볼까요? ^^

우선 NAN(매크로 상수)는,

dblValue.value = NAN;
print("NAN", dblValue); // == -1#IND

dblValue.value = -NAN;
print("-NAN\t", dblValue); // == 1#IND

/* 출력 결과
[NAN] -nan(ind) is      FF F8 00 00 00 00 00 00
[-NAN   ] nan is        7F F8 00 00 00 00 00 00
*/

보는 바와 같이 NAN 값이 "-1#IND"에 해당하는 비트 값을 가집니다. 그다음, std::numeric_limits::signaling_NaN()은,

dblValue.value = std::numeric_limits<double>::signaling_NaN();
print("signaling_NaN", dblValue); // == 1#QNAN

dblValue.value = -std::numeric_limits<double>::signaling_NaN();
print("-signaling_NaN", dblValue); // == -1#QNAN

/* 출력 결과
[signaling_NaN] nan is  7F F8 00 00 00 00 00 01
[-signaling_NaN] -nan is        FF F8 00 00 00 00 00 01
*/

signaling이라는 단어가 무색하게 "quiet" 비트가 1로 설정된 1#QNAN, -1#QNAN에 해당하는 비트 값을 가집니다. 반면 std::numeric_limits::quiet_NaN()은,

dblValue.value = std::numeric_limits<double>::quiet_NaN();
print("quiet_NaN", dblValue); // == -NAN == 1#IND

dblValue.value = -std::numeric_limits<double>::quiet_NaN();
print("quiet_NaN", dblValue); // == NAN == -1#IND

/* 출력 결과
[quiet_NaN] nan is      7F F8 00 00 00 00 00 00
[quiet_NaN] -nan(ind) is        FF F8 00 00 00 00 00 00
*/

(어쨌든 "quiet" 비트가 1이지만) 1#IND, -1#IND의 값을 가집니다. 마지막으로 nan("...") 함수는,

dblValue.value = nan(nullptr);
print("nan(nullptr)", dblValue);

dblValue.value = nan("");
print("nan(empty)", dblValue);

dblValue.value = nan("test");
print("nan(test)", dblValue);

/* 출력 결과
[nan(nullptr)] nan is   7F F8 00 00 00 00 00 00
[nan(empty)] nan is     7F F8 00 00 00 00 00 00
[nan(test)] nan is      7F F8 00 00 00 00 00 00
*/

"1#IND"에 해당하는 값을 반환합니다. 따라서 위의 값/함수들로는 C++에서 "nan(snan)"으로 출력되는 nan 값을 가질 수는 없습니다.




아래의 문서에 보면,

std::numeric_limits::signaling_NaN
; https://en.cppreference.com/w/cpp/types/numeric_limits/signaling_NaN

signaling_NaN 값을 다른 값과 연산하면 "quiet NaN"이 결괏값으로 나온다고 합니다.

#include <iostream>
#include <limits>
#include <cfenv>
#pragma STDC_FENV_ACCESS on

void show_fe_exceptions()
{
    int n = std::fetestexcept(FE_ALL_EXCEPT);
    if(n & FE_INVALID) std::cout << "FE_INVALID is raised\n";
    else if(n == 0)    std::cout << "no exceptions are raised\n";
    std::feclearexcept(FE_ALL_EXCEPT);
}

int main()
{
    double snan = std::numeric_limits<double>::signaling_NaN();
    std::cout << "After sNaN was obtained ";
    show_fe_exceptions();
    double qnan = snan * 2.0;
    std::cout << "After sNaN was multiplied by 2 ";
    show_fe_exceptions();
    double qnan2 = qnan * 2.0;
    std::cout << "After the quieted NaN was multiplied by 2 ";
    show_fe_exceptions();
    std::cout << "The result is " << qnan2 << '\n';
}

/* 출력 결과
After sNaN was obtained no exceptions are raised
After sNaN was multiplied by 2 FE_INVALID is raised
After the quieted NaN was multiplied by 2 no exceptions are raised
The result is nan
*/

위의 소스 코드를 Visual C++로 옮기려면 "#pragma STDC_FENV_ACCESS on" 대신 "#pragma fenv_access(on)"으로 바꿔야 합니다. (이 설정을 하면 부동 소수점 최적화를 하지 않습니다.)

그런데 실제로 snan과 qnan, qnan2의 값이 다를까요? 이것은 환경마다 다른 것 같습니다. 왜냐하면 Visual C++의 경우 다음과 같이 출력하기 때문입니다.

#pragma fenv_access(on)

#include <iostream>
#include <limits>
#include <cfenv>

void show_fe_exceptions()
{
    int n = std::fetestexcept(FE_ALL_EXCEPT);
    if (n & FE_INVALID) std::cout << "FE_INVALID is raised\n";
    else if (n & _EM_ZERODIVIDE) std::cout << "_EM_ZERODIVIDE is raised\n";
    else if (n == 0)    std::cout << "no exceptions are raised\n";
    std::feclearexcept(FE_ALL_EXCEPT);
}

int test_nan()
{
    std::cout << endl;

    DoubleExt dblValue;

    double snan = std::numeric_limits<double>::signaling_NaN();
    dblValue.value = snan;
    print("snan", dblValue);
    std::cout << "1) After sNaN was obtained ";
    show_fe_exceptions();
    std::cout << endl;

    double qnan = snan * 2.0;
    dblValue.value = qnan;
    print("qnan", dblValue);
    std::cout << "2) After sNaN was multiplied by 2 ";
    show_fe_exceptions();
    std::cout << endl;

    double qnan2 = qnan * 2.0;
    dblValue.value = qnan2;
    print("qnan2", dblValue);
    std::cout << "3) After the quieted NaN was multiplied by 2 ";
    show_fe_exceptions();

    return 0;
}

/*
[snan] nan is   7F F8 00 00 00 00 00 01
1) After sNaN was obtained FE_INVALID is raised

[qnan] nan is   7F F8 00 00 00 00 00 01
2) After sNaN was multiplied by 2 no exceptions are raised

[qnan2] nan is  7F F8 00 00 00 00 00 01
3) After the quieted NaN was multiplied by 2 no exceptions are raised
*/

보는 바와 같이 모든 변수의 값에 변함이 없습니다. 단지 결과적으로 봤을 때 signaling, quiet라는 의미에서 이해를 시도해 볼 수 있습니다. 즉, 처음 signaling_NaN을 생성하는 경우 부동 소수점 오류가 발생해 FE_INVALID 값이 설정되는 것입니다. 이후 해당 nan 값에 대해 연산을 시도하는 경우 quiet nan 처리가 된다는 의미에서 부동 소수점 연산에 예외가 발생하지 않는 것입니다.




휴~~~ 어렵군요. ^^; 일단, 정리는 해놨으니 이론적으로 출중하신 분이 이 글을 우연히 읽으신다면 더 좋은 덧글이 달릴 것으로 기대합니다. ^^ 참고로, C#의 경우 아래와 같이 확인을 할 수 있고,

static unsafe void Main(string[] args)
{
    {
        DoubleExp t = new DoubleExp { Value = double.PositiveInfinity };
        WriteValue(double.PositiveInfinity, "1#INF: " + nameof(double.PositiveInfinity));
    }
    {
        DoubleExp t = new DoubleExp { Value = double.NegativeInfinity };
        WriteValue(double.NegativeInfinity, "-1#INF: " + nameof(double.NegativeInfinity));
    }

    Console.WriteLine();

    {
        DoubleExp nanType1 = new DoubleExp();
        nanType1.SetBits(false, 0x7ff, false, 101);

        WriteValue(nanType1.Value, "1#SNAN: false, 0x7ff, false, 101");
    }
    {
        DoubleExp nanType2 = new DoubleExp();
        nanType2.SetBits(true, 0x7ff, false, 101);

        WriteValue(nanType2.Value, "-1#SNAN: true, 0x7ff, false, 101");
    }

    Console.WriteLine();

    {
        DoubleExp nanType1 = new DoubleExp();
        nanType1.SetBits(false, 0x7ff, true, 101);

        WriteValue(nanType1.Value, "1#QNAN: false, 0x7ff, true, 101");
    }
    {
        DoubleExp nanType2 = new DoubleExp();
        nanType2.SetBits(true, 0x7ff, true, 101);

        WriteValue(nanType2.Value, "-1#QNAN: true, 0x7ff, true, 101");
    }

    Console.WriteLine();

    {
        DoubleExp nanType1 = new DoubleExp();
        nanType1.SetBits(false, 0x7ff, true, 0);

        WriteValue(nanType1.Value, "1#IND: false, 0x7ff, true, 0");
    }
    {
        DoubleExp nanType2 = new DoubleExp();
        nanType2.SetBits(true, 0x7ff, true, 0);

        WriteValue(nanType2.Value, "-1#IND: true, 0x7ff, true, 0");
    }

    Console.WriteLine();

    WriteValue(double.NaN, nameof(double.NaN));
}

출력 결과를 놓고 보면,

1#INF: PositiveInfinity(∞): 0x7ff0000000000000
-1#INF: NegativeInfinity(-∞): 0xfff0000000000000

1#SNAN: false, 0x7ff, false, 101(NaN): 0x7ff0000000000065
-1#SNAN: true, 0x7ff, false, 101(NaN): 0xfff0000000000065

1#QNAN: false, 0x7ff, true, 101(NaN): 0x7ff8000000000065
-1#QNAN: true, 0x7ff, true, 101(NaN): 0xfff8000000000065

1#IND: false, 0x7ff, true, 0(NaN): 0x7ff8000000000000
-1#IND: true, 0x7ff, true, 0(NaN): 0xfff8000000000000

NaN(NaN): 0xfff8000000000000

INF를 제외하고는 모든 NAN이 아무런 구별 없이 "NAN"으로 출력되는 것을 볼 수 있습니다. 또한 "double.NaN" 상수는 메모리 표현상으로 보면 "-1#IND" 값과 동일합니다. 즉, C++의 NAN 매크로 상숫값과 같습니다.

(첨부 파일은 이 글의 소스 코드를 포함합니다.)

[https://twitter.com/PR0GRAMMERHUM0R/status/1699530441399636325]
Nan_ne_Nan.jpg




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/7/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 121  122  123  124  125  126  127  128  129  130  [131]  132  133  134  135  ...
NoWriterDateCnt.TitleFile(s)
1780정성태10/15/201424188오류 유형: 249. The application-specific permission settings do not grant Local Activation permission for the COM Server application with CLSID
1779정성태10/15/201419719오류 유형: 248. Active Directory에서 OU가 지워지지 않는 경우
1778정성태10/10/201418174오류 유형: 247. The Netlogon service could not create server share C:\Windows\SYSVOL\sysvol\[도메인명]\SCRIPTS.
1777정성태10/10/201421284오류 유형: 246. The processing of Group Policy failed. Windows attempted to read the file \\[도메인]\sysvol\[도메인]\Policies\{...GUID...}\gpt.ini
1776정성태10/10/201418317오류 유형: 245. 이벤트 로그 - Name resolution for the name _ldap._tcp.dc._msdcs.[도메인명]. timed out after none of the configured DNS servers responded.
1775정성태10/9/201419438오류 유형: 244. Visual Studio 디버깅 (2) - Unable to break execution. This process is not currently executing the type of code that you selected to debug.
1774정성태10/9/201426641개발 환경 구성: 246. IIS 작업자 프로세스의 20분 자동 재생(Recycle)을 끄는 방법
1773정성태10/8/201429787.NET Framework: 471. 웹 브라우저로 다운로드가 되는 파일을 왜 C# 코드로 하면 안되는 걸까요? [1]
1772정성태10/3/201418573.NET Framework: 470. C# 3.0의 기본 인자(default parameter)가 .NET 1.1/2.0에서도 실행될까? [3]
1771정성태10/2/201428089개발 환경 구성: 245. 실행된 프로세스(EXE)의 명령행 인자를 확인하고 싶다면 - Sysmon [4]
1770정성태10/2/201421702개발 환경 구성: 244. 매크로 정의를 이용해 파일 하나로 C++과 C#에서 공유하는 방법 [1]파일 다운로드1
1769정성태10/1/201424119개발 환경 구성: 243. Scala 개발 환경 구성(JVM, 닷넷) [1]
1768정성태10/1/201419547개발 환경 구성: 242. 배치 파일에서 Thread.Sleep 효과를 주는 방법 [5]
1767정성태10/1/201424636VS.NET IDE: 94. Visual Studio 2012/2013에서의 매크로 구현 - Visual Commander [2]
1766정성태10/1/201422500개발 환경 구성: 241. 책 "프로그래밍 클로저: Lisp"을 읽고 나서. [1]
1765정성태9/30/201426057.NET Framework: 469. Unity3d에서 transform을 변수에 할당해 사용하는 특별한 이유가 있을까요?
1764정성태9/30/201422300오류 유형: 243. 파일 삭제가 안 되는 경우 - The action can't be comleted because the file is open in System
1763정성태9/30/201423867.NET Framework: 468. PDB 파일을 연동해 소스 코드 라인 정보를 알아내는 방법파일 다운로드1
1762정성태9/30/201424552.NET Framework: 467. 닷넷에서 EIP/RIP 레지스터 값을 구하는 방법 [1]파일 다운로드1
1761정성태9/29/201421588.NET Framework: 466. 윈도우 운영체제의 보안 그룹 이름 및 설명 문자열을 바꾸는 방법파일 다운로드1
1760정성태9/28/201419860.NET Framework: 465. ICorProfilerInfo::GetILToNativeMapping 메서드가 0x80131358을 반환하는 경우
1759정성태9/27/201430989개발 환경 구성: 240. Visual C++ / x64 환경에서 inline-assembly를 매크로 어셈블리로 대체하는 방법파일 다운로드1
1758정성태9/23/201437888개발 환경 구성: 239. 원격 데스크톱 접속(RDP)을 기존의 콘솔 모드처럼 사용하는 방법 [1]
1757정성태9/23/201418423오류 유형: 242. Lync로 모임 참여 시 소리만 들리지 않는 경우 - 두 번째 이야기
1756정성태9/23/201427443기타: 48. NVidia 제품의 과다한 디스크 사용 [2]
1755정성태9/22/201434216오류 유형: 241. Unity Web Player를 설치해도 여전히 설치하라는 화면이 나오는 경우 [4]
... 121  122  123  124  125  126  127  128  129  130  [131]  132  133  134  135  ...