Microsoft MVP성태의 닷넷 이야기
Math: 52. MathNet을 이용한 간단한 통계 정보 처리 - 분산/표준편차 [링크 복사], [링크+제목 복사],
조회: 22034
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

MathNet을 이용한 간단한 통계 정보 처리 - 분산/표준편차

C# - MathNet.Numerics의 Matrix(행렬) 연산
; https://www.sysnet.pe.kr/2/0/11910

MathNET + OxyPlot을 이용한 간단한 통계 정보 처리 - Histogram
; https://www.sysnet.pe.kr/2/0/11916

이번엔 MathNet의 분산과 표준편차를 위한 메서드를 보겠습니다.

List<double> dblHeights = LoadData("data.txt");

// dblHeights == 32 27 29 34 33라고 가정

Console.WriteLine($"# of data: {dblHeights.Count}"); // 31

Console.WriteLine($"MathNet - Variance: {Statistics.Variance(dblHeights)}"); // 8.5
Console.WriteLine($"MathNet - Standard Deviation: {Statistics.StandardDeviation(dblHeights)}"); // 2.91547594742265

그런데 값이 좀 이상합니다. 위의 분산값은 8.5라고 나오는데, 실제로 계산해 보면 6.8이기 때문입니다. (분산이 틀리니 표준편차 값도 당연히 틀립니다.) 이유는 간단합니다. Variance와 StandardDeviation 메서드는 통계의 "모집단(population)에 대한 분산/표준편차"가 아니라 "표본(sample)에 대한 분산/표준편차"를 출력해 주는 것이고 표본의 경우 Bessel's correction을 고려한 값을 반환하도록 되어 있습니다.

엑셀(Excel)을 해보신 분은 알겠지만 엑셀에서도 다음의 2가지 분산/표준편차 함수가 제공됩니다.

VAR.S       표본에 대한 분산
STDDEV.S    표본에 대한 표준편차

VAR.P       모집단에 대한 분산
STDDEV.P    모집단에 대한 표준편차

* S는 Sample, P는 Population을 의미

C# 코드로 분산을 구현하면 이렇게 작성할 수 있습니다.

public static double Variance(double[] samples, double mean, bool useBesselCorrection)
{
    if (samples.Length <= ((useBesselCorrection == true) ? 1 : 0))
    {
        return double.NaN;
    }

    double sum = 0;

    for (int i = 0; i < samples.Length; i++)
    {
        double diff = samples[i] - mean;
        sum += (diff * diff);
    }

    double variance = sum / ((samples.Length - ((useBesselCorrection == true) ? 1 : 0)));
    return variance;
}

통계학의 기본을 알지 못하면 어찌 보면 말장난 같기도 합니다. 모집단에 대한 분산을 구할 때는 samples.Length로 나누고, 표본에 대한 분산을 구할 때는 samples.Length - 1을 하게 됩니다. 즉, 동일한 데이터를 samples 배열에 넣어 전달해도 그것이 모집단(전체 집합)의 데이터냐, 부분 샘플에 대한 데이터냐에 따라 결과가 달리 나오는 것입니다. (참고: https://blog.naver.com/dalsapcho/20147545698, 개인적으로 이 글에서 "개념 정리"에 나온 그림이 마음에 듭니다. ^^)




그런데 Math.NET의 분산을 구하는 코드가 재미있습니다.

/*
Estimates the unbiased population variance from the provided samples as unsorted array. 
On a dataset of size N will use an N-1 normalizer (Bessel's correction). 
Returns NaN if data has less than two entries or if any entry is NaN. 
*/
public static double Variance(double[] samples)
{
    if (samples.Length <= 1)
    {
        return double.NaN;
    }
    double num = 0.0;
    double num2 = samples[0];
    for (int i = 1; i < samples.Length; i++)
    {
        num2 += samples[i];
        double num4 = ((i + 1) * samples[i]) - num2;
        num += (num4 * num4) / ((i + 1.0) * i);
    }
    return (num / ((double) (samples.Length - 1))); // 표본 분산이므로.
}

제가 만든 C# 분산 코드와 위의 분산을 구하는 코드가 다릅니다. 하지만 (double 연산의 특성으로 소수점 2자리부터 차이가 발생하지만) 결과는 같습니다. 왜 저렇게 어렵게 분산을 구하는 것일까요? 이유가 멋집니다. 제가 작성했던 코드는 2-pass인 반면, Math.NET의 코드는 1-pass입니다. 다시 말해, 제가 작성한 코드는 평균값을 알고 있어야 하는데 그 평균을 구하기 위해 미리 한번 전체 데이터에 대한 루프를 돌아야 하지만, Math.NET의 코드는 평균값을 알지 못해도 분산을 구할 수 있는 것입니다.

물론, 평균값을 이미 구했다면 2-pass 코드가 분산을 더 빠르게 구할 수 있습니다. 사실... 통계값을 구한다면 대부분의 경우 평균은 기본적으로 구할 것이므로 현실적으로 효용성이 있느냐는 별개의 문제로 보입니다. ^^




참고로 Math.NET에서 모집단에 대한 분산/표준편차를 구하려면 Population이 붙은 메서드를 사용하면 됩니다.

Console.WriteLine($"MathNet - Variance: {Statistics.PopulationVariance(dblHeights)}");
Console.WriteLine($"MathNet - Standard Deviation: {Statistics.PopulationStandardDeviation(dblHeights)}");

또한 구현 코드 역시 Bessel's correction의 차이에 따라 "-1" 교정이 없는 버전의 동일한 코드로 제공됩니다.

/*
Evaluates the population variance from the full population provided as unsorted array. 
On a dataset of size N will use an N normalizer and would thus be biased if applied to a subset. 
Returns NaN if data is empty or if any entry is NaN.
*/
public static double PopulationVariance(double[] population)
{
    if (population.Length == 0)
    {
        return double.NaN;
    }
    double num = 0.0;
    double num2 = population[0];
    for (int i = 1; i < population.Length; i++)
    {
        num2 += population[i];
        double num4 = ((i + 1) * population[i]) - num2;
        num += (num4 * num4) / ((i + 1.0) * i);
    }
    return (num / ((double) population.Length));
}

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 2/21/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13667정성태7/7/20246623닷넷: 2273. C# - 리눅스 환경에서의 Hyper-V Socket 연동 (AF_VSOCK)파일 다운로드1
13666정성태7/7/20247700Linux: 74. C++ - Vsock 예제 (Hyper-V Socket 연동)파일 다운로드1
13665정성태7/6/20247881Linux: 73. Linux 측의 socat을 이용한 Hyper-V 호스트와의 vsock 테스트파일 다운로드1
13663정성태7/5/20247478닷넷: 2272. C# - Hyper-V Socket 통신(AF_HYPERV, AF_VSOCK)의 VMID Wildcards 유형파일 다운로드1
13662정성태7/4/20247491닷넷: 2271. C# - WSL 2 VM의 VM ID를 알아내는 방법 - Host Compute System API파일 다운로드1
13661정성태7/3/20247413Linux: 72. g++ - 다른 버전의 GLIBC로 소스코드 빌드
13660정성태7/3/20247522오류 유형: 912. Visual C++ - Linux 프로젝트 빌드 오류
13659정성태7/1/20247860개발 환경 구성: 715. Windows - WSL 2 환경의 Docker Desktop 네트워크
13658정성태6/28/20248238개발 환경 구성: 714. WSL 2 인스턴스와 호스트 측의 Hyper-V에 운영 중인 VM과 네트워크 연결을 하는 방법 - 두 번째 이야기
13657정성태6/27/20247917닷넷: 2270. C# - Hyper-V Socket 통신(AF_HYPERV, AF_VSOCK)을 위한 EndPoint 사용자 정의
13656정성태6/27/20248094Windows: 264. WSL 2 VM의 swap 파일 위치
13655정성태6/24/20247851닷넷: 2269. C# - Win32 Resource 포맷 해석파일 다운로드1
13654정성태6/24/20247788오류 유형: 911. shutdown - The entered computer name is not valid or remote shutdown is not supported on the target computer.
13653정성태6/22/20247937닷넷: 2268. C# 코드에서 MAKEINTREOURCE 매크로 처리
13652정성태6/21/20249250닷넷: 2267. C# - Linux 환경에서 (Reflection 없이) DLL AssemblyFileVersion 구하는 방법파일 다운로드2
13651정성태6/19/20248488닷넷: 2266. C# - (Reflection 없이) DLL AssemblyFileVersion 구하는 방법파일 다운로드1
13650정성태6/18/20248410개발 환경 구성: 713. "WSL --debug-shell"로 살펴보는 WSL 2 VM의 리눅스 환경
13649정성태6/18/20247961오류 유형: 910. windbg - !py 확장 명령어 실행 시 "failed to find python interpreter" (2)
13648정성태6/17/20248281오류 유형: 909. C# - DynamicMethod 사용 시 System.TypeAccessException
13647정성태6/16/20249345개발 환경 구성: 712. Windows - WSL 2의 네트워크 통신 방법 - 세 번째 이야기 (같은 IP를 공유하는 WSL 2 인스턴스) [1]
13646정성태6/14/20247761오류 유형: 908. Process Explorer - "Error configuring dump resources: The system cannot find the file specified."
13645정성태6/13/20248198개발 환경 구성: 711. Visual Studio로 개발 시 기본 등록하는 dev tag 이미지로 Docker Desktop k8s에서 실행하는 방법
13644정성태6/12/20248868닷넷: 2265. C# - System.Text.Json의 기본적인 (한글 등에서의) escape 처리 [1]
13643정성태6/12/20248321오류 유형: 907. MySqlConnector 사용 시 System.IO.FileLoadException 오류
13642정성태6/11/20248199스크립트: 65. 파이썬 - asgi 버전(2, 3)에 따라 달라지는 uvicorn 호스팅
13641정성태6/11/20248673Linux: 71. Ubuntu 20.04를 22.04로 업데이트
1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...