Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 19814
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13704정성태8/2/20249593닷넷: 2290. C# - 간이 dotnet-dump 프로그램 만들기파일 다운로드1
13703정성태8/1/20248156닷넷: 2289. "dotnet-dump ps" 명령어가 닷넷 프로세스를 찾는 방법
13702정성태7/31/20249141닷넷: 2288. Collection 식을 지원하는 사용자 정의 타입을 CollectionBuilder 특성으로 성능 보완파일 다운로드1
13701정성태7/30/20249511닷넷: 2287. C# 13 - (4) Indexer를 이용한 개체 초기화 구문에서 System.Index 연산자 허용파일 다운로드1
13700정성태7/29/20249430디버깅 기술: 200. DLL Export/Import의 Hint 의미
13699정성태7/27/20249480닷넷: 2286. C# 13 - (3) Monitor를 대체할 Lock 타입파일 다운로드1
13698정성태7/27/20249293닷넷: 2285. C# - async 메서드에서의 System.Threading.Lock 잠금 처리파일 다운로드1
13697정성태7/26/20248607닷넷: 2284. C# - async 메서드에서의 lock/Monitor.Enter/Exit 잠금 처리파일 다운로드1
13696정성태7/26/20248329오류 유형: 920. dotnet publish - error NETSDK1047: Assets file '...\obj\project.assets.json' doesn't have a target for '...'
13695정성태7/25/20248625닷넷: 2283. C# - Lock / Wait 상태에서도 STA COM 메서드 호출 처리파일 다운로드1
13694정성태7/25/20248796닷넷: 2282. C# - ASP.NET Core Web App의 Request 용량 상한값 (Kestrel, IIS)
13693정성태7/24/20248009개발 환경 구성: 717. Visual Studio - C# 프로젝트에서 레지스트리에 등록하지 않은 COM 개체 참조 및 사용 방법파일 다운로드1
13692정성태7/24/20249190디버깅 기술: 199. Windbg - 리눅스에서 뜬 닷넷 응용 프로그램 덤프 파일에 포함된 DLL의 Export Directory 탐색
13691정성태7/23/20248182디버깅 기술: 198. Windbg - 스레드의 Win32 Message Queue 정보 조회
13690정성태7/23/20247662오류 유형: 919. Visual C++ 리눅스 프로젝트 - error : ‘u8’ was not declared in this scope
13689정성태7/22/20249905디버깅 기술: 197. Windbg - PE 포맷의 Export Directory 탐색
13688정성태7/21/20248391닷넷: 2281. C# - Lock / Wait 상태에서도 일부 Win32 메시지 처리파일 다운로드1
13687정성태7/19/20249214닷넷: 2280. C# - PostThreadMessage로 보낸 메시지를 Windows Forms에서 수신하는 방법파일 다운로드1
13686정성태7/19/20248871오류 유형: 918. Visual Studio - ATL Simple Object 추가 시 error C2065: 'IDR_...': undeclared identifier
13685정성태7/19/20248722스크립트: 66. Windows 디렉터리 경로를 WSL의 /mnt 포맷으로 구하는 방법 - 두 번째 이야기
13684정성태7/19/20249350닷넷: 2279. C# - 문자열 보간식 사례 (예: 조건 연산자 사용)
13683정성태7/18/20248441오류 유형: 917. ClrMD - Linux 환경의 .NET 5 덤프 분석 시 hang 현상
13682정성태7/18/20248793닷넷: 2278. WPF - 스레드에 종속되는 DependencyObject파일 다운로드1
13681정성태7/17/20248165닷넷: 2277. C# 13 - (2) 메서드 그룹의 자연 타입 개선 (메서드 추론 개선)파일 다운로드1
13680정성태7/16/20249170닷넷: 2276. C# - Method Group, Natural Type, function_type파일 다운로드1
13679정성태7/16/20247560Linux: 76. Linux - C++ (getaddrinfo 등을 담고 있는) libnss 정적 링크
1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...