Microsoft MVP성태의 닷넷 이야기
Math: 52. MathNet을 이용한 간단한 통계 정보 처리 - 분산/표준편차 [링크 복사], [링크+제목 복사],
조회: 25732
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

MathNet을 이용한 간단한 통계 정보 처리 - 분산/표준편차

C# - MathNet.Numerics의 Matrix(행렬) 연산
; https://www.sysnet.pe.kr/2/0/11910

MathNET + OxyPlot을 이용한 간단한 통계 정보 처리 - Histogram
; https://www.sysnet.pe.kr/2/0/11916

이번엔 MathNet의 분산과 표준편차를 위한 메서드를 보겠습니다.

List<double> dblHeights = LoadData("data.txt");

// dblHeights == 32 27 29 34 33라고 가정

Console.WriteLine($"# of data: {dblHeights.Count}"); // 31

Console.WriteLine($"MathNet - Variance: {Statistics.Variance(dblHeights)}"); // 8.5
Console.WriteLine($"MathNet - Standard Deviation: {Statistics.StandardDeviation(dblHeights)}"); // 2.91547594742265

그런데 값이 좀 이상합니다. 위의 분산값은 8.5라고 나오는데, 실제로 계산해 보면 6.8이기 때문입니다. (분산이 틀리니 표준편차 값도 당연히 틀립니다.) 이유는 간단합니다. Variance와 StandardDeviation 메서드는 통계의 "모집단(population)에 대한 분산/표준편차"가 아니라 "표본(sample)에 대한 분산/표준편차"를 출력해 주는 것이고 표본의 경우 Bessel's correction을 고려한 값을 반환하도록 되어 있습니다.

엑셀(Excel)을 해보신 분은 알겠지만 엑셀에서도 다음의 2가지 분산/표준편차 함수가 제공됩니다.

VAR.S       표본에 대한 분산
STDDEV.S    표본에 대한 표준편차

VAR.P       모집단에 대한 분산
STDDEV.P    모집단에 대한 표준편차

* S는 Sample, P는 Population을 의미

C# 코드로 분산을 구현하면 이렇게 작성할 수 있습니다.

public static double Variance(double[] samples, double mean, bool useBesselCorrection)
{
    if (samples.Length <= ((useBesselCorrection == true) ? 1 : 0))
    {
        return double.NaN;
    }

    double sum = 0;

    for (int i = 0; i < samples.Length; i++)
    {
        double diff = samples[i] - mean;
        sum += (diff * diff);
    }

    double variance = sum / ((samples.Length - ((useBesselCorrection == true) ? 1 : 0)));
    return variance;
}

통계학의 기본을 알지 못하면 어찌 보면 말장난 같기도 합니다. 모집단에 대한 분산을 구할 때는 samples.Length로 나누고, 표본에 대한 분산을 구할 때는 samples.Length - 1을 하게 됩니다. 즉, 동일한 데이터를 samples 배열에 넣어 전달해도 그것이 모집단(전체 집합)의 데이터냐, 부분 샘플에 대한 데이터냐에 따라 결과가 달리 나오는 것입니다. (참고: https://blog.naver.com/dalsapcho/20147545698, 개인적으로 이 글에서 "개념 정리"에 나온 그림이 마음에 듭니다. ^^)




그런데 Math.NET의 분산을 구하는 코드가 재미있습니다.

/*
Estimates the unbiased population variance from the provided samples as unsorted array. 
On a dataset of size N will use an N-1 normalizer (Bessel's correction). 
Returns NaN if data has less than two entries or if any entry is NaN. 
*/
public static double Variance(double[] samples)
{
    if (samples.Length <= 1)
    {
        return double.NaN;
    }
    double num = 0.0;
    double num2 = samples[0];
    for (int i = 1; i < samples.Length; i++)
    {
        num2 += samples[i];
        double num4 = ((i + 1) * samples[i]) - num2;
        num += (num4 * num4) / ((i + 1.0) * i);
    }
    return (num / ((double) (samples.Length - 1))); // 표본 분산이므로.
}

제가 만든 C# 분산 코드와 위의 분산을 구하는 코드가 다릅니다. 하지만 (double 연산의 특성으로 소수점 2자리부터 차이가 발생하지만) 결과는 같습니다. 왜 저렇게 어렵게 분산을 구하는 것일까요? 이유가 멋집니다. 제가 작성했던 코드는 2-pass인 반면, Math.NET의 코드는 1-pass입니다. 다시 말해, 제가 작성한 코드는 평균값을 알고 있어야 하는데 그 평균을 구하기 위해 미리 한번 전체 데이터에 대한 루프를 돌아야 하지만, Math.NET의 코드는 평균값을 알지 못해도 분산을 구할 수 있는 것입니다.

물론, 평균값을 이미 구했다면 2-pass 코드가 분산을 더 빠르게 구할 수 있습니다. 사실... 통계값을 구한다면 대부분의 경우 평균은 기본적으로 구할 것이므로 현실적으로 효용성이 있느냐는 별개의 문제로 보입니다. ^^




참고로 Math.NET에서 모집단에 대한 분산/표준편차를 구하려면 Population이 붙은 메서드를 사용하면 됩니다.

Console.WriteLine($"MathNet - Variance: {Statistics.PopulationVariance(dblHeights)}");
Console.WriteLine($"MathNet - Standard Deviation: {Statistics.PopulationStandardDeviation(dblHeights)}");

또한 구현 코드 역시 Bessel's correction의 차이에 따라 "-1" 교정이 없는 버전의 동일한 코드로 제공됩니다.

/*
Evaluates the population variance from the full population provided as unsorted array. 
On a dataset of size N will use an N normalizer and would thus be biased if applied to a subset. 
Returns NaN if data is empty or if any entry is NaN.
*/
public static double PopulationVariance(double[] population)
{
    if (population.Length == 0)
    {
        return double.NaN;
    }
    double num = 0.0;
    double num2 = population[0];
    for (int i = 1; i < population.Length; i++)
    {
        num2 += population[i];
        double num4 = ((i + 1) * population[i]) - num2;
        num += (num4 * num4) / ((i + 1.0) * i);
    }
    return (num / ((double) population.Length));
}

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 2/21/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...
NoWriterDateCnt.TitleFile(s)
12153정성태2/23/202024444.NET Framework: 898. Trampoline을 이용한 후킹의 한계파일 다운로드1
12152정성태2/23/202021439.NET Framework: 897. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 세 번째 이야기(Trampoline 후킹)파일 다운로드1
12151정성태2/22/202024073.NET Framework: 896. C# - Win32 API를 Trampoline 기법을 이용해 C# 메서드로 가로채는 방법 - 두 번째 이야기 (원본 함수 호출)파일 다운로드1
12150정성태2/21/202024177.NET Framework: 895. C# - Win32 API를 Trampoline 기법을 이용해 C# 메서드로 가로채는 방법 [1]파일 다운로드1
12149정성태2/20/202021079.NET Framework: 894. eBEST C# XingAPI 래퍼 - 연속 조회 처리 방법 [1]
12148정성태2/19/202025767디버깅 기술: 163. x64 환경에서 구현하는 다양한 Trampoline 기법 [1]
12147정성태2/19/202021062디버깅 기술: 162. x86/x64의 기계어 코드 최대 길이
12146정성태2/18/202022260.NET Framework: 893. eBEST C# XingAPI 래퍼 - 로그인 처리파일 다운로드1
12145정성태2/18/202023868.NET Framework: 892. eBEST C# XingAPI 래퍼 - Sqlite 지원 추가파일 다운로드1
12144정성태2/13/202024050.NET Framework: 891. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 두 번째 이야기파일 다운로드1
12143정성태2/13/202018466.NET Framework: 890. 상황별 GetFunctionPointer 반환값 정리 - x64파일 다운로드1
12142정성태2/12/202022415.NET Framework: 889. C# 코드로 접근하는 MethodDesc, MethodTable파일 다운로드1
12141정성태2/10/202021400.NET Framework: 888. C# - ASP.NET Core 웹 응용 프로그램의 출력 가로채기 [2]파일 다운로드1
12140정성태2/10/202022738.NET Framework: 887. C# - ASP.NET 웹 응용 프로그램의 출력 가로채기파일 다운로드1
12139정성태2/9/202022429.NET Framework: 886. C# - Console 응용 프로그램에서 UI 스레드 구현 방법
12138정성태2/9/202028637.NET Framework: 885. C# - 닷넷 응용 프로그램에서 SQLite 사용 [6]파일 다운로드1
12137정성태2/9/202020295오류 유형: 592. [AhnLab] 경고 - 디버거 실행을 탐지했습니다.
12136정성태2/6/202021952Windows: 168. Windows + S(또는 Q)로 뜨는 작업 표시줄의 검색 바가 동작하지 않는 경우
12135정성태2/6/202027731개발 환경 구성: 468. Nuget 패키지의 로컬 보관 폴더를 옮기는 방법 [2]
12134정성태2/5/202024983.NET Framework: 884. eBEST XingAPI의 C# 래퍼 버전 - XingAPINet Nuget 패키지 [5]파일 다운로드1
12133정성태2/5/202022753디버깅 기술: 161. Windbg 환경에서 확인해 본 .NET 메서드 JIT 컴파일 전과 후 - 두 번째 이야기
12132정성태1/28/202025845.NET Framework: 883. C#으로 구현하는 Win32 API 후킹(예: Sleep 호출 가로채기) [1]파일 다운로드1
12131정성태1/27/202024505개발 환경 구성: 467. LocaleEmulator를 이용해 유니코드를 지원하지 않는(한글이 깨지는) 프로그램을 실행하는 방법 [1]
12130정성태1/26/202022052VS.NET IDE: 142. Visual Studio에서 windbg의 "Open Executable..."처럼 EXE를 직접 열어 디버깅을 시작하는 방법
12129정성태1/26/202029073.NET Framework: 882. C# - 키움 Open API+ 사용 시 Registry 등록 없이 KHOpenAPI.ocx 사용하는 방법 [3]
12128정성태1/26/202023191오류 유형: 591. The code execution cannot proceed because mfc100.dll was not found. Reinstalling the program may fix this problem.
... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...