Microsoft MVP성태의 닷넷 이야기
Math: 57. C# - 해석학적 방법을 이용한 최소 자승법 [링크 복사], [링크+제목 복사],
조회: 26101
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 해석학적 방법을 이용한 최소 자승법

다음의 글에 보면,

최소자승법 이해와 다양한 활용예 (Least Square Method)
; https://darkpgmr.tistory.com/56

최소 자승법(최소 제곱법)의 풀이로 대수적 방법과 해석학적 방법이 있다고 하는데요. 대수적 방법은 지난번에 설명했으니, 이번엔 해석학적 방법을 알아보겠습니다. (보다 더 자세한 설명은 "기초 수학으로 이해하는 머신러닝 알고리즘" 책을 참고하시고 여기서는 간략하게 넘어가겠습니다.)

그러니까, 결국 중요한 것은 데이터를 근사하는 방정식의,

fθ(x) = θ0 + θ1x

매개변수 값(θ0, θ1)을 정하는 것입니다. 이를 위해 데이터와의 오차를 계산하는 목적함수에 대해,



각각의 매개변수(θ0, θ1)로 편미분한 도함수를 다음과 같이 정리할 수 있습니다.




도함수가 정해졌으니, 이제 목적함수의 최솟값을 구하기 위해 경사하강법을 사용할 수 있고,

C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

따라서 도함수의 부호에 따라 매개변수를 근사하는 식은 다음과 같이 정리가 됩니다.




끝났군요. ^^ 이제 위의 동작을 코드로 잘 옮겨주면 연산이 진행될수록 θ0, θ1 값들은 근사한 1차 방정식의 모습을 갖추게 될 것입니다.




말이 좀 어려운데, 사실 코드로 보면 그다지 어렵지 않습니다. ^^

using MathNet.Numerics.Random;
using Microsoft.ML;
using Microsoft.ML.Data;
using PLplot;
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML.Data;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        // 표준화
        var xyList = ctx.Data.CreateEnumerable<ClickData>(data, false).NormalizeZscore();

        // 매개변수 초기화
        double theta0 = SystemRandomSource.Default.NextDouble();
        double theta1 = SystemRandomSource.Default.NextDouble();

        // 예측 함수
        Func<double, double> f = (x) => theta0 + theta1 * x;

        // 목적 함수
        Func<double, double, double> errorFunc = (x, y) => Math.Pow((y - f(x)), 2);
        Func<IEnumerable<ClickData>, double> E = (list) => 0.5 * list.ForEach((e) => errorFunc(e.X, e.Y)).Sum();

        // 학습률
        double ETA = 1e-03;

        // 오차의 차분
        double diff = 1.0;

        // 갱신 횟수
        int count = 0;

        // 오차의 차분이 0.01 이하가 될 때까지 매개변수 갱신을 반복
        double error = E(xyList);

        while (diff > 1e-02)
        {
            // 갱신 결과를 임시 변수에 저장
            double tmp_theta0 = theta0 - ETA * xyList.ForEach((e) => f(e.X) - e.Y).Sum();
            double tmp_theta1 = theta1 - ETA * xyList.ForEach((e) => (f(e.X) - e.Y) * e.X).Sum();

            // 매개변수 갱신
            theta0 = tmp_theta0;
            theta1 = tmp_theta1;

            // 이전 회의 오차와의 차분을 계산
            double currentError = E(xyList);
            diff = error - currentError;
            error = currentError;

            // 로그 출력
            count++;
            Console.WriteLine($"{count,4:#} 회째: theta0 = {theta0,8:#.0000}, theta1 = {theta1,8:#.0000}, 차분 = {diff,8:#.0000}");
        }

        // 그래프 출력
        double[] xData = xyList.Select((elem) => elem.X).ToArray();
        double[] yData = xyList.Select((elem) => elem.Y).ToArray();
        DrawPlotChart(xData, yData, f);
    }
}

/* 출력 결과
   1 회째: theta0 =   9.3955, theta1 =   2.6899, 차분 = 76048.3710
   2 회째: theta0 =  17.7905, theta1 =   4.5057, 차분 = 73036.8555
   3 회째: theta0 =  26.0177, theta1 =   6.2851, 차분 = 70144.5960
...[생략]...
 384 회째: theta0 = 428.9669, theta1 =  93.4392, 차분 =    .0145
 385 회째: theta0 = 428.9706, theta1 =  93.4400, 차분 =    .0139
 386 회째: theta0 = 428.9742, theta1 =  93.4407, 차분 =    .0133
 387 회째: theta0 = 428.9777, theta1 =  93.4415, 차분 =    .0128
 388 회째: theta0 = 428.9812, theta1 =  93.4422, 차분 =    .0123
 389 회째: theta0 = 428.9845, theta1 =  93.4430, 차분 =    .0118
 390 회째: theta0 = 428.9878, theta1 =  93.4437, 차분 =    .0113
 391 회째: theta0 = 428.9911, theta1 =  93.4444, 차분 =    .0109
 392 회째: theta0 = 428.9943, theta1 =  93.4451, 차분 =    .0105
 393 회째: theta0 = 428.9974, theta1 =  93.4458, 차분 =    .0101
 394 회째: theta0 = 429.0004, theta1 =  93.4464, 차분 =    .0097
*/

출력된 그래프를 보면 잘 근사한 것을 확인할 수 있습니다.

lsm_gradient_descent_1.png

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




그러니까 위의 소스 코드는 "기초 수학으로 이해하는 머신러닝 알고리즘" 책의 파이썬 코드를,

math-for-ml / regression1_linear.py 
; https://github.com/wikibook/math-for-ml/blob/master/regression1_linear.py

C# 버전으로 변경했다고 보면 되겠습니다. ^^




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/31/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2019-06-11 12시04분
다음의 글에 그래프가 수렴하는 애니메이션을 확인할 수 있습니다. ^^

C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; http://www.sysnet.pe.kr/2/0/11936

--------------------------------

[KIER energy+AI] 07 - Gaussian Process
; https://www.youtube.com/watch?v=9vIPzpzfw-o
정성태

... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...
NoWriterDateCnt.TitleFile(s)
12153정성태2/23/202024421.NET Framework: 898. Trampoline을 이용한 후킹의 한계파일 다운로드1
12152정성태2/23/202021428.NET Framework: 897. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 세 번째 이야기(Trampoline 후킹)파일 다운로드1
12151정성태2/22/202024060.NET Framework: 896. C# - Win32 API를 Trampoline 기법을 이용해 C# 메서드로 가로채는 방법 - 두 번째 이야기 (원본 함수 호출)파일 다운로드1
12150정성태2/21/202024161.NET Framework: 895. C# - Win32 API를 Trampoline 기법을 이용해 C# 메서드로 가로채는 방법 [1]파일 다운로드1
12149정성태2/20/202021069.NET Framework: 894. eBEST C# XingAPI 래퍼 - 연속 조회 처리 방법 [1]
12148정성태2/19/202025747디버깅 기술: 163. x64 환경에서 구현하는 다양한 Trampoline 기법 [1]
12147정성태2/19/202021048디버깅 기술: 162. x86/x64의 기계어 코드 최대 길이
12146정성태2/18/202022249.NET Framework: 893. eBEST C# XingAPI 래퍼 - 로그인 처리파일 다운로드1
12145정성태2/18/202023856.NET Framework: 892. eBEST C# XingAPI 래퍼 - Sqlite 지원 추가파일 다운로드1
12144정성태2/13/202024031.NET Framework: 891. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 두 번째 이야기파일 다운로드1
12143정성태2/13/202018449.NET Framework: 890. 상황별 GetFunctionPointer 반환값 정리 - x64파일 다운로드1
12142정성태2/12/202022371.NET Framework: 889. C# 코드로 접근하는 MethodDesc, MethodTable파일 다운로드1
12141정성태2/10/202021376.NET Framework: 888. C# - ASP.NET Core 웹 응용 프로그램의 출력 가로채기 [2]파일 다운로드1
12140정성태2/10/202022727.NET Framework: 887. C# - ASP.NET 웹 응용 프로그램의 출력 가로채기파일 다운로드1
12139정성태2/9/202022413.NET Framework: 886. C# - Console 응용 프로그램에서 UI 스레드 구현 방법
12138정성태2/9/202028622.NET Framework: 885. C# - 닷넷 응용 프로그램에서 SQLite 사용 [6]파일 다운로드1
12137정성태2/9/202020272오류 유형: 592. [AhnLab] 경고 - 디버거 실행을 탐지했습니다.
12136정성태2/6/202021915Windows: 168. Windows + S(또는 Q)로 뜨는 작업 표시줄의 검색 바가 동작하지 않는 경우
12135정성태2/6/202027715개발 환경 구성: 468. Nuget 패키지의 로컬 보관 폴더를 옮기는 방법 [2]
12134정성태2/5/202024977.NET Framework: 884. eBEST XingAPI의 C# 래퍼 버전 - XingAPINet Nuget 패키지 [5]파일 다운로드1
12133정성태2/5/202022731디버깅 기술: 161. Windbg 환경에서 확인해 본 .NET 메서드 JIT 컴파일 전과 후 - 두 번째 이야기
12132정성태1/28/202025753.NET Framework: 883. C#으로 구현하는 Win32 API 후킹(예: Sleep 호출 가로채기) [1]파일 다운로드1
12131정성태1/27/202024476개발 환경 구성: 467. LocaleEmulator를 이용해 유니코드를 지원하지 않는(한글이 깨지는) 프로그램을 실행하는 방법 [1]
12130정성태1/26/202022045VS.NET IDE: 142. Visual Studio에서 windbg의 "Open Executable..."처럼 EXE를 직접 열어 디버깅을 시작하는 방법
12129정성태1/26/202029066.NET Framework: 882. C# - 키움 Open API+ 사용 시 Registry 등록 없이 KHOpenAPI.ocx 사용하는 방법 [3]
12128정성태1/26/202023179오류 유형: 591. The code execution cannot proceed because mfc100.dll was not found. Reinstalling the program may fix this problem.
... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...