Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 18579
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 121  122  123  124  125  126  127  128  129  130  [131]  132  133  134  135  ...
NoWriterDateCnt.TitleFile(s)
1781정성태10/21/201420646디버깅 기술: 64. new/delete의 짝이 맞는 경우에도 메모리 누수가 발생한다면?
1780정성태10/15/201424268오류 유형: 249. The application-specific permission settings do not grant Local Activation permission for the COM Server application with CLSID
1779정성태10/15/201419781오류 유형: 248. Active Directory에서 OU가 지워지지 않는 경우
1778정성태10/10/201418263오류 유형: 247. The Netlogon service could not create server share C:\Windows\SYSVOL\sysvol\[도메인명]\SCRIPTS.
1777정성태10/10/201421360오류 유형: 246. The processing of Group Policy failed. Windows attempted to read the file \\[도메인]\sysvol\[도메인]\Policies\{...GUID...}\gpt.ini
1776정성태10/10/201418365오류 유형: 245. 이벤트 로그 - Name resolution for the name _ldap._tcp.dc._msdcs.[도메인명]. timed out after none of the configured DNS servers responded.
1775정성태10/9/201419482오류 유형: 244. Visual Studio 디버깅 (2) - Unable to break execution. This process is not currently executing the type of code that you selected to debug.
1774정성태10/9/201426668개발 환경 구성: 246. IIS 작업자 프로세스의 20분 자동 재생(Recycle)을 끄는 방법
1773정성태10/8/201429853.NET Framework: 471. 웹 브라우저로 다운로드가 되는 파일을 왜 C# 코드로 하면 안되는 걸까요? [1]
1772정성태10/3/201418620.NET Framework: 470. C# 3.0의 기본 인자(default parameter)가 .NET 1.1/2.0에서도 실행될까? [3]
1771정성태10/2/201428127개발 환경 구성: 245. 실행된 프로세스(EXE)의 명령행 인자를 확인하고 싶다면 - Sysmon [4]
1770정성태10/2/201421727개발 환경 구성: 244. 매크로 정의를 이용해 파일 하나로 C++과 C#에서 공유하는 방법 [1]파일 다운로드1
1769정성태10/1/201424152개발 환경 구성: 243. Scala 개발 환경 구성(JVM, 닷넷) [1]
1768정성태10/1/201419563개발 환경 구성: 242. 배치 파일에서 Thread.Sleep 효과를 주는 방법 [5]
1767정성태10/1/201424727VS.NET IDE: 94. Visual Studio 2012/2013에서의 매크로 구현 - Visual Commander [2]
1766정성태10/1/201422539개발 환경 구성: 241. 책 "프로그래밍 클로저: Lisp"을 읽고 나서. [1]
1765정성태9/30/201426085.NET Framework: 469. Unity3d에서 transform을 변수에 할당해 사용하는 특별한 이유가 있을까요?
1764정성태9/30/201422319오류 유형: 243. 파일 삭제가 안 되는 경우 - The action can't be comleted because the file is open in System
1763정성태9/30/201423892.NET Framework: 468. PDB 파일을 연동해 소스 코드 라인 정보를 알아내는 방법파일 다운로드1
1762정성태9/30/201424625.NET Framework: 467. 닷넷에서 EIP/RIP 레지스터 값을 구하는 방법 [1]파일 다운로드1
1761정성태9/29/201421677.NET Framework: 466. 윈도우 운영체제의 보안 그룹 이름 및 설명 문자열을 바꾸는 방법파일 다운로드1
1760정성태9/28/201419916.NET Framework: 465. ICorProfilerInfo::GetILToNativeMapping 메서드가 0x80131358을 반환하는 경우
1759정성태9/27/201431090개발 환경 구성: 240. Visual C++ / x64 환경에서 inline-assembly를 매크로 어셈블리로 대체하는 방법파일 다운로드1
1758정성태9/23/201437924개발 환경 구성: 239. 원격 데스크톱 접속(RDP)을 기존의 콘솔 모드처럼 사용하는 방법 [1]
1757정성태9/23/201418524오류 유형: 242. Lync로 모임 참여 시 소리만 들리지 않는 경우 - 두 번째 이야기
1756정성태9/23/201427490기타: 48. NVidia 제품의 과다한 디스크 사용 [2]
... 121  122  123  124  125  126  127  128  129  130  [131]  132  133  134  135  ...