Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 19956
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 121  122  123  124  125  126  127  128  129  130  131  132  133  134  [135]  ...
NoWriterDateCnt.TitleFile(s)
1714정성태7/11/201421574VS.NET IDE: 92. Visual Studio 2013을 지원하는 IL Support 확장 도구
1713정성태7/11/201445360Windows: 98. 윈도우 시스템 디스크 용량 확보를 위한 "Package Cache" 폴더 이동 [1]
1712정성태7/10/201433908.NET Framework: 450. 영문 윈도우에서 C# 콘솔 프로그램의 유니코드 출력 방법 [3]
1711정성태7/10/201438883Windows: 97. cmd.exe 창에서 사용할 폰트를 추가하는 방법 [1]
1710정성태7/8/201431583개발 환경 구성: 230. 유니코드의 Surrogate Pair, Supplementary Characters가 뭘까요?파일 다운로드2
1709정성태7/8/201428177VS.NET IDE: 91. Visual Studio에서 32/64비트 IIS Express 실행하는 방법
1708정성태7/7/201425536VS.NET IDE: 90. Visual Studio - 사용자 정의 정적 분석 규칙 만드는 방법 [3]파일 다운로드1
1707정성태7/4/201423670.NET Framework: 449. C#에서 C++로 VARIANT 넘겨주는 방법파일 다운로드1
1706정성태7/3/201422097.NET Framework: 448. .NET SmartClient 컨트롤을 윈도우 8/2012에서 활성화하는 방법파일 다운로드1
1705정성태7/2/201436538VC++: 78. 보이어-무어(Boyer-Moore) 알고리즘이 정말 빠를까? [6]파일 다운로드1
1704정성태7/2/201423030.NET Framework: 447. w3wp.exe AppPool 재생(recycle)하는 방법 정리
1703정성태7/2/201423783.NET Framework: 446. Assembly.Load를 이용해 GAC에 등록된 어셈블리를 로드하는 방법 [1]파일 다운로드1
1702정성태6/23/201423720Phone: 11. Xamarin.Forms - 2. XAML을 이용한 페이지 개발파일 다운로드1
1701정성태6/23/201435892개발 환경 구성: 229. .NET Reflector + Reflexil 도구를 이용해 DLL 코드 변경 [4]
1700정성태6/23/201422573VS.NET IDE: 89. Visual Studio에서 기본 제공되는 성능 프로파일 [2]
1699정성태6/22/201424843Phone: 10. Xamarin.Forms - 1. Forms 시작하기 [2]파일 다운로드1
1698정성태6/22/201426731.NET Framework: 445. [부연 설명] 쉬운 C# 코드를 어럽게 이해하기 [2]
1697정성태6/22/201422439VS.NET IDE: 88. Visual Studio에서 직접 컴파일하는 IL 언어 확장 도구 - IL Support
1696정성태6/22/201421866.NET Framework: 444. clojure와 C#을 통해 이해하는 Sequence와 Vector 형식의 차이점 [1]
1695정성태6/21/201420962개발 환경 구성: 228. PowerShell ISE에서 (입력 기능이 있는) 콘솔 응용 프로그램을 시작하는 방법
1694정성태6/21/201422582개발 환경 구성: 227. 닷넷 용 ClojureCLR 개발환경 설정
1693정성태6/20/201423088개발 환경 구성: 226. Clojure 언어의 윈도우 개발환경 설정
1692정성태6/19/201433499오류 유형: 231. Visual Studio 2013 한글 버전 설치 오류 - The form specified for the subject is not one supported or known by the specified trust provider
1691정성태6/18/201428887개발 환경 구성: 225. 유닉스 계열의 tail 명령어가 제공되는 PowerShell [1]
1690정성태6/18/201431611개발 환경 구성: 224. DirectShow 예제 구하는 방법 [3]
1689정성태6/18/201428539오류 유형: 230. C++ 가변 인자 사용시 va_start 파라미터 전달 방법 [2]
... 121  122  123  124  125  126  127  128  129  130  131  132  133  134  [135]  ...