Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 20074
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 136  137  138  139  140  141  142  143  144  145  146  147  [148]  149  150  ...
NoWriterDateCnt.TitleFile(s)
1388정성태12/12/201224539.NET Framework: 348. .NET x64 응용 프로그램에서 Teb 주소를 구하는 방법파일 다운로드1
1387정성태12/12/201229712VC++: 64. x64 Visual C++에서 TEB 주소 구하는 방법
1386정성태12/12/201231055디버깅 기술: 53. windbg - 덤프 파일로부터 네이티브 DLL을 추출하는 방법 [1]
1385정성태12/12/201226474디버깅 기술: 52. Windbg - The version of SOS does not match the version of CLR you are debugging.
1384정성태12/12/201231147개발 환경 구성: 178. System32 폴더의 64비트 DLL을 32비트 Depends.exe에서 보는 방법
1383정성태12/10/201227150개발 환경 구성: 177. 기업용 메신저를 위한 Office Communicator Server 2007 설치 [1]
1382정성태12/8/201229769개발 환경 구성: 176. WebPagetest 서버 - 설치 및 테스트
1381정성태12/5/201228557.NET Framework: 347. C# - 프로세스(EXE) 수준의 Singleton 개체 생성 [2]파일 다운로드1
1380정성태11/28/201238617.NET Framework: 346. 닷넷 개발자에게 Node.js의 의미 [17]
1379정성태11/26/201231897.NET Framework: 345. C# 부호(+, -)에 대한 비트 변환 [1]
1378정성태11/22/201232980Java: 14. 안드로이드 - Hello World 실습 [7]
1377정성태11/19/201226613.NET Framework: 344. 닷넷 프로파일러 - ICorProfilerInfo::GetILFunctionBody 함수 버그
1376정성태11/15/201231684디버깅 기술: 51. 닷넷 응용 프로그램에서 특정 예외가 발생했을 때 풀 덤프 받는 방법 [6]
1375정성태11/15/201227433디버깅 기술: 50. windbg의 mscordacwks DLL 로드 문제 - 두 번째 이야기
1374정성태11/13/201225432개발 환경 구성: 175. Visual Studio의 "Extension Manager"에서 설치된 구성 요소들의 제거 버튼이 비활성화되었다면!
1373정성태11/13/201226023.NET Framework: 343. VB.NET 어셈블리의 .NET Reflector 소스 코드를 분석할 때 알아두면 좋은 사항
1372정성태11/1/2012120681Windows: 67. 64비트 윈도우에서 Internet Explorer 10이 항상 64비트로만 실행된다면? [57]
1371정성태10/31/201228669.NET Framework: 342. Python의 zip과 with 문 context를 C#과 비교하면. [3]파일 다운로드1
1370정성태10/31/201223657VS.NET IDE: 75. Visual Studio - "Active Solution Platform" 변경을 툴바에서 하는 방법
1369정성태10/31/201236906개발 환경 구성: 174. 윈도우에서 Mono 개발 환경 구성 [4]
1368정성태10/31/201228506개발 환경 구성: 173. Windows Phone SDK 8.0 설치
1367정성태10/30/201236052개발 환경 구성: 172. IIS 7.5부터 지원되는 웹 사이트 자동 시작 모드 [1]
1366정성태10/24/201227525개발 환경 구성: 171. GTK+를 윈도우 환경에 수작업 설치
1365정성태10/24/201226277개발 환경 구성: 170. 우분투 데스크톱 Active Directory 가입하기 [2]
1364정성태10/19/201222855Windows: 66. Hyper-V 2012에서 별도의 네트워크 카드를 이용한 Live Migration
1363정성태10/16/201230396개발 환경 구성: 169. Objective-C의 대안 - Xamarin의 Mono를 이용한 C# iOS 개발 환경 [2]
... 136  137  138  139  140  141  142  143  144  145  146  147  [148]  149  150  ...