Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 21121
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 151  152  153  154  155  156  157  158  [159]  160  161  162  163  164  165  ...
NoWriterDateCnt.TitleFile(s)
1135정성태9/29/201125567오류 유형: 138. TF10216: Team Foundation services are currently unavailable
1134정성태9/27/201133155.NET Framework: 241. C# 5.0에 새로 추가된 Caller Info 특성 [5]
1133정성태9/25/201136683VC++: 54. C++로 만든 WinRT 프로그램 [2]
1132정성태9/24/201176180Java: 9. 자바의 keytool.exe 사용법과 Tomcat의 SSL 통신 설정
1131정성태9/23/201132098Java: 8. 닷넷 개발자가 구현해 본 자바 웹 서비스 (2)
1130정성태9/23/201140616Java: 7. 닷넷 개발자가 구현해 본 자바 웹 서비스 (1)파일 다운로드2
1129정성태9/22/201132225개발 환경 구성: 130. Hyper-V에 MS-DOS VM 만드는 방법 - MSDN 구독자 대상 [3]
1128정성태9/20/201132474오류 유형: 137. KB2449742 보안 업데이트로 인한 충돌 문제 해결 - 두 번째 이야기
1127정성태9/19/201135895Java: 6. Java에서 MySQL 사용 [2]
1126정성태9/18/201131010Math: 3. "유클리드 호제법"과 "Bezout's identity" 구현 코드(C#)파일 다운로드1
1125정성태9/17/201128910Windows: 54. Windows 8 개발자 Preview를 사용해 보고... [2]
1124정성태9/17/201129169.NET Framework: 240. System.Collections.ArrayList가 .NET 4.5에서 지원이 안된다??? [2]
1123정성태9/17/201168288Windows: 53. 2가지 모드의 Internet Explorer 10과 ActiveX [6]
1122정성태9/16/201135670Windows: 52. 새롭게 지원되는 WinRT 응용 프로그램 [7]
1121정성태9/12/201130619Java: 5. WTP 내에서 서블릿을 실행하는 환경
1120정성태9/11/201130604.NET Framework: 239. IHttpHandler.IsReusable 속성 이야기파일 다운로드1
1119정성태9/11/201129212Java: 4. 이클립스에 WTP SDK가 설치되지 않는다면? [2]
1118정성태9/11/201141615Java: 3. 이클립스에서 서블릿 디버깅하는 방법 [4]
1117정성태9/9/201128651제니퍼 .NET: 17. 제니퍼 닷넷 적용 사례 (2) - 웹 애플리케이션 hang의 원인을 알려주다.
1116정성태9/8/201160089Java: 2. 자바에서 "Microsoft SQL Server JDBC Driver" 사용하는 방법
1115정성태9/4/201133324Java: 1. 닷넷 개발자가 처음 실습해 본 서블릿
1114정성태9/4/201137778Math: 2. "Zhang Suen 알고리즘(세선화, Thinning/Skeletonization)"의 C# 버전 [4]파일 다운로드1
1113정성태9/2/201137356개발 환경 구성: 129. Hyper-V에 CentOS 설치하기
1112정성태9/2/201153939Linux: 1. 리눅스 <-> 윈도우 원격 접속 프로그램 사용 [3]
1111정성태8/29/201127955제니퍼 .NET: 16. 적용 사례 (1) - DB Connection Pooling을 사용하지 않았을 때의 성능 저하를 알려주다. [1]
1110정성태8/26/201129851오류 유형: 136. RDP 접속이 불연속적으로 끊기는 문제
... 151  152  153  154  155  156  157  158  [159]  160  161  162  163  164  165  ...