Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 18619
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 151  152  153  154  155  156  157  158  [159]  160  161  162  163  164  165  ...
NoWriterDateCnt.TitleFile(s)
1074정성태6/20/201125040.NET Framework: 225. 닷넷 네트워크 라이브러리의 트레이스 기능파일 다운로드1
1073정성태6/20/201127275오류 유형: 127. Visual Studio에서 WCF 서비스의 이름 변경 시 발생할 수 있는 오류
1072정성태6/19/201126739.NET Framework: 224. EF 4.1 Code First에서 Identity 칼럼 생성하는 방법파일 다운로드1
1071정성태6/19/201130247.NET Framework: 223. Entity Framework 4.1의 Code First를 이용한 SQL Azure 데이터베이스 생성 [3]파일 다운로드1
1070정성태6/19/201127773.NET Framework: 222. Windows Azure - VM Role 베타 프로그램 참여 [2]
1069정성태6/18/201127878.NET Framework: 221. Cache 영향을 받지 않는 DNS 이름 풀이 [2]파일 다운로드1
1068정성태6/16/201125495개발 환경 구성: 127. Portable Library - 닷넷 N-Screen용 공통 라이브러리 제작 [1]
1067정성태6/15/201125105오류 유형: 126. Windows failed to apply the Group Policy Folder Options settings. [1]
1066정성태6/14/201128084개발 환경 구성: 126. MSDN 구독자 - Windows Azure 무료 서비스 신청하는 방법 [4]
1065정성태6/13/201132870개발 환경 구성: 125. Firebird - 유니코드 기본 문자셋 지정
1064정성태6/11/201127551웹: 22. Visual Studio 2010에서 CSS 3 인텔리센스(intellisense) 지원하는 방법 [1]
1063정성태6/10/201129137웹: 21. Sysnet 웹 사이트의 CSS 2.1 변환 기록 [1]
1062정성태6/9/201129365웹: 20. Sysnet 웹 사이트의 HTML5 변환 기록 [1]
1061정성태6/8/201127548오류 유형: 125. 인터넷 익스플로러 - 개발자 도구에서 정지점(BP: Breakpoint) 설정이 안 되는 경우 [1]
1060정성태6/8/201124109VC++: 51. PHP 모듈의 F5 디버깅
1059정성태6/6/201129246VC++: 50. PHP 모듈 - php_mysql 빌드하는 방법파일 다운로드1
1058정성태6/5/201132844개발 환경 구성: 124. .NET 개발자가 처음 해보는 PHP + MySQL 연동 [2]
1057정성태6/4/201130216VC++: 49. 소스 코드로부터 php5apache2_2.dll 생성하는 방법파일 다운로드1
1056정성태6/2/201128405VC++: 48. 윈도우에서 Apache Module - Content Handler 컴파일파일 다운로드1
1055정성태6/1/201125635오류 유형: 124. MVC 프로젝트의 Site.Master 관련 오류 정리
1054정성태5/31/201129866.NET Framework: 220. ASP.NET MVC Web Site 프로젝트 - 단위 테스트 작성파일 다운로드1
1053정성태5/31/201132388VC++: 47. Apache Module에 대한 'F5 디버그 (Start with debugging)' [2]
1052정성태5/30/201130046.NET Framework: 219. ASP.NET MVC Web Site 프로젝트 구성하기파일 다운로드1
1051정성태5/28/201138523VC++: 46. 윈도우에서 Apache Module 컴파일 (VC++)파일 다운로드1
1050정성태5/28/201124709오류 유형: 123. Firebird - Exception of type 'FirebirdSql.Data.Common.IscException' was thrown.
1049정성태5/28/201130379.NET Framework: 218. WCF REST 서비스 - 웹 브라우저 측 Ajax 호출 캐시 [1]
... 151  152  153  154  155  156  157  158  [159]  160  161  162  163  164  165  ...