Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 19892
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 151  152  153  154  155  156  157  158  159  160  161  [162]  163  164  165  ...
NoWriterDateCnt.TitleFile(s)
1032정성태5/1/201129993웹: 18. IIS Express를 NT 서비스로 변경
1031정성태4/30/201130963웹: 17. IIS Express - "IIS Installed Versions Manager Interface"의 IIISExpressProcessUtility 구하는 방법 [1]파일 다운로드1
1030정성태4/30/201153372개발 환경 구성: 118. IIS Express - localhost 이외의 호스트 이름으로 접근하는 방법 [4]파일 다운로드1
1029정성태4/28/201142326개발 환경 구성: 117. XCopy에서 파일/디렉터리 확인 질문 없애기 [2]
1028정성태4/27/201139750오류 유형: 119. Visual Studio 2010 SP1 설치 후 Windows Phone 개발자 도구로 인한 재설치 문제 [3]
1027정성태4/25/201128886디버깅 기술: 40. 상황별 GetFunctionPointer 반환값 정리 - x86파일 다운로드1
1026정성태4/25/201147522디버깅 기술: 39. DebugDiag 1.1을 사용한 덤프 분석 [7]
1025정성태4/24/201129351개발 환경 구성: 116. IIS 7 관리자 - Active Directory Certification Authority로부터 SSL 사이트 인증서 받는 방법 [2]
1024정성태4/22/201130685오류 유형: 118. Windows 2008 서버에서 Event Viewer / PowerShell 실행 시 비정상 종료되는 문제 [1]
1023정성태4/20/201131561.NET Framework: 210. Windbg 환경에서 확인해 본 .NET 메서드 JIT 컴파일 전과 후 [1]
1022정성태4/19/201126832디버깅 기술: 38. .NET Disassembly 창에서의 F11(Step-into) 키 동작파일 다운로드1
1021정성태4/18/201129265디버깅 기술: 37. .NET 4.0 응용 프로그램의 Main 함수에 BreakPoint 걸기
1020정성태4/18/201130017오류 유형: 117. Failed to find runtime DLL (mscorwks.dll), 0x80004005
1019정성태4/17/201130837디버깅 기술: 36. Visual Studio의 .NET Disassembly 창의 call 호출에 사용되는 주소의 의미는? [1]파일 다운로드1
1018정성태4/16/201134649오류 유형: 116. 윈도우 업데이트 오류 - 0x8020000E
1017정성태4/14/201129123개발 환경 구성: 115. MSBuild - x86/x64, .NET 2/4, debug/release 빌드에 대한 배치 처리파일 다운로드1
1016정성태4/13/201145301개발 환경 구성: 114. Windows Thin PC 설치 [2]
1015정성태4/9/201130604.NET Framework: 209. AutoReset, ManualReset, Monitor.Wait의 차이파일 다운로드1
1014정성태4/7/2011108095오류 유형: 115. ORA-12516: TNS:listener could not find available handler with matching protocol stack [2]
1013정성태4/7/201125847Team Foundation Server: 45. SharePoint 2010 + TFS 2010 환경에서 ProcessGuidance.html 파일 다운로드 문제
1012정성태4/6/201134577.NET Framework: 208. WCF - 접속된 클라이언트의 IP 주소 알아내는 방법 [1]
1011정성태3/31/201136950오류 유형: 114. 인증서 갱신 오류 - The request contains no certificate template information.
1010정성태3/30/201127740개발 환경 구성: 113. 응용 프로그램 디자인 스케치 도구 - SketchFlow [4]
1009정성태3/29/201140057개발 환경 구성: 112. Visual Studio 2010 - .NET Framework 소스 코드 디버깅 [4]
1008정성태3/27/201132390.NET Framework: 207. C# - Right operand가 음수인 Shift 연산 결과 [2]
1007정성태3/16/201133339개발 환경 구성: 111. Excel - XML 파일 연동 [5]파일 다운로드1
... 151  152  153  154  155  156  157  158  159  160  161  [162]  163  164  165  ...