Microsoft MVP성태의 닷넷 이야기
Math: 60. C# - 로지스틱 회귀를 이용한 분류 [링크 복사], [링크+제목 복사],
조회: 21271
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 로지스틱 회귀를 이용한 분류

이번에도,

기초 수학으로 이해하는 머신러닝 알고리즘
; https://wikibook.co.kr/math-for-ml/

지난번의 퍼셉트론 분류에 이어,

C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

책에서 공개한 파이썬 버전의 로지스틱 회귀를,

wikibook/math-for-ml
; https://github.com/wikibook/math-for-ml/blob/master/classification2_logistic_regression.py

C# 버전으로 포팅해 보겠습니다. ^^




우선 예측 함수로서의 시그모이드는,



C#으로 이렇게 정의할 수 있습니다.

Func<Vector<double>, Vector<double>, double> f = (x, t) =>
                1 / (1 + Math.Exp(-x * theta));

재미있는 것은 가능도 함수(책에서는 우도 함수)가,



제곱 계산 때문에 0으로 빠르게 수렴하는 문제를 완화하기 위해 대수 우도 함수를 정의하는데,



이것을 미분해 얻은 갱신식이 결국,



웨이트 벡터 갱신식최소 자승법의 경우와 유사하다는 점입니다. 정말이지 수학 분야는 너무나 신비롭습니다. ^^

어쨌든 책에서는 위의 미분 함수에서 부호를 밖으로 빼내 다음과 같이 정리해서 사용합니다.



C# 코드로는 이 부분을 다음과 같이 바꿀 수 있습니다.

var fResult = imgList.ForEach((elem) => f(elem.AsVectorX(), theta) - elem.Y).ToVector();
theta = theta - ETA * fResult * X;

암튼, 이렇게 해서 classification2_logistic_regression.py 소스 코드를 C#으로 변환하면 (각종 확장 함수의 도움을 이용해 ^^;) 대충 이렇게 정리할 수 있습니다.

static void Main(string[] args)
{
    MLContext ctx = new MLContext();

    string inputFileName = "images2.csv";
    IDataView data = ctx.Data.LoadFromTextFile<ImageRect>(inputFileName, separatorChar: ',', hasHeader: true);

    // 매개변수 초기화
    Vector<double> theta = Vector<double>.Build.Dense(SystemRandomSource.Default.NextDoubles(3));

    var dataList = ctx.Data.CreateEnumerable<ImageRect>(data, false);
    var statInfo = dataList.GetStatisticsInfo();

    // 표준화
    var imgList = dataList.NormalizeZscore(statInfo);
    Matrix<double> X = imgList.ToMatrix();

    Console.WriteLine(X);

    // 시그모이드 함수
    Func<Vector<double>, Vector<double>, double> f = (x, t) =>
                    1 / (1 + Math.Exp(-x * theta));

    // 학습률
    double ETA = 1e-3;

    // 반복 횟수
    int epoch = 5000;

    // 갱신 횟수
    for (int i = 0; i < epoch; i ++)
    {
        var fResult = imgList.ForEach((elem) => f(elem.AsVectorX(), theta) - elem.Y).ToVector();
        theta = theta - ETA * fResult * X;

        // Console.WriteLine(theta);
    }

    Console.WriteLine($"theta = {theta}");

    OutputChart(imgList, theta);
}

그런대로 좀 비슷하죠?!!! ^^;

(첨부 파일은 이 글의 소스 코드를 포함합니다.)




참고로, 분류 함수의 출력 그래프는 다음과 같고,

logistic_regression_1.png

지난 퍼셉트론 글에서 분류하지 못했던 "x2의 값이 300 이상인 경우 -1, 미만인 경우 1의 데이터"에 대해서도 다음과 같이 잘 분류를 하는 것을 볼 수 있습니다. ^^

logistic_regression_2.png




시간 되시면 다음의 글도 읽어보시고. ^^

Sigmoid function (시그모이드 함수)
; https://m.blog.naver.com/2feelus/220363930362

Mathpresso 머신 러닝 스터디 - 3. 오차를 다루는 방법_1
; https://medium.com/qandastudy/mathpresso-%EB%A8%B8%EC%8B%A0-%EB%9F%AC%EB%8B%9D-%EC%8A%A4%ED%84%B0%EB%94%94-3-%EC%98%A4%EC%B0%A8%EB%A5%BC-%EB%8B%A4%EB%A3%A8%EB%8A%94-%EB%B0%A9%EB%B2%95-7d1fb64ea0cf

R을 이용한 회귀분석 (이부일 | 인사이트마이닝)
; https://www.youtube.com/watch?v=fCF1SXix10Y





[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 4/16/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 121  [122]  123  124  125  126  127  128  129  130  131  132  133  134  135  ...
NoWriterDateCnt.TitleFile(s)
10909정성태2/25/201626885기타: 56. ETW provider 목록 [3]
10908정성태2/25/201623062기타: 55. ETW man 파일 목록
10907정성태2/24/201622400.NET Framework: 554. 인터프리터 - 재귀적 하향 구문 분석 C# 예제파일 다운로드1
10906정성태2/24/201620309.NET Framework: 553. C# 관리 코드에서 IMetaDataDispenserEx, IMetaDataImport 관련 인터페이스를 얻는 방법파일 다운로드1
10905정성태2/24/201623871오류 유형: 321. Hyper-V The operation failed with error code '32791'.
10904정성태2/23/201621056.NET Framework: 552. 인터프리터 - 역폴란드 표기법을 이용한 식의 분석 - C# 예제파일 다운로드1
10903정성태2/22/201621762.NET Framework: 551. 인터프리터 어휘 분석 프로그램 - C# 예제파일 다운로드1
10902정성태2/22/201621851.NET Framework: 550. GetFunctionPointer 호출 시 System.InvalidProgramException 예외 발생
10901정성태2/20/201624562.NET Framework: 549. ContextBoundObject 상속 클래스와 System.Reflection.ReflectionTypeLoadException 예외 [4]파일 다운로드1
10900정성태2/19/201623518.NET Framework: 548. Linq는 결국 메서드 호출! [3]파일 다운로드1
10899정성태2/17/201624879개발 환경 구성: 282. kernel32.dll, kernel32legacy.dll, api-ms-win-core-sysinfo-l1-2-0.dll [1]
10898정성태2/17/201623308.NET Framework: 547. PerformanceCounter의 InstanceName 지정 시 주의 사항파일 다운로드1
10897정성태2/17/201622677디버깅 기술: 76. windbg 분석 사례 - 닷넷 프로파일러의 GC 콜백 부하
10896정성태2/17/201623268오류 유형: 320. FATAL: 28000: no pg_hba.conf entry for host "fe80::1970:8120:695:a41e%12"
10895정성태2/17/201622367.NET Framework: 546. System.AppDomain으로부터 .NET Profiler의 AppDomainID 구하는 방법 [1]
10894정성태2/17/201622688오류 유형: 319. Visual Studio에서 찾기는 성공하지만 해당 소스 코드 정보가 보이지 않는 경우
10893정성태2/16/201621573.NET Framework: 545. 닷넷 - 특정 클래스가 로드되었는지 여부를 알 수 있을까? - 두 번째 이야기
10892정성태2/16/201622111오류 유형: 318. 탐색기에서 폴더 생성/삭제 시 몇 초 동안 멈추는 현상
10891정성태2/16/201625499VC++: 95. 내 CPU가 MPX/SGX를 지원할까요? [1]
10890정성태2/15/201624787.NET Framework: 544. C# 5의 Caller Info를 .NET 4.5 미만의 응용 프로그램에 적용하는 방법 [5]
10889정성태2/14/201621613.NET Framework: 543. C++의 inline asm 사용을 .NET으로 포팅하는 방법 - 두 번째 이야기파일 다운로드1
10888정성태2/14/201619530.NET Framework: 542. 닷넷 - 특정 클래스가 로드되었는지 여부를 알 수 있을까?
10887정성태2/3/201620990VC++: 94. MPX(Memory Protection Extensions) 테스트파일 다운로드1
10886정성태2/3/201622408개발 환경 구성: 281. Intel MPX Runtime Driver 수동 설치
10885정성태2/2/201621466오류 유형: 317. Sybase.Data.AseClient.AseException: The command has timed out.
10884정성태1/11/201622374개발 환경 구성: 280. 닷넷에서 SAP Adaptive Server Enterprise 데이터베이스 사용파일 다운로드1
... 121  [122]  123  124  125  126  127  128  129  130  131  132  133  134  135  ...