Microsoft MVP성태의 닷넷 이야기
Math: 64. C# - 3층 구조의 신경망(분류) [링크 복사], [링크+제목 복사],
조회: 18278
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 3층 구조의 신경망(분류)

지난 글에 이어서,

C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

아래의 책에 보면,

실체가 손에 잡히는 딥러닝
; http://www.yes24.com/Product/Goods/74258238

3층 신경망을 이용한 분류 예제를 파이썬 코드로 싣고 있습니다.

# http://nanya-kanya.net/index.php/1232/#outline__1_30

import numpy as np
import matplotlib.pyplot as plt

X = np.arange(-1.0, 1.0, 0.1)
Y = np.arange(-1.0, 1.0, 0.1)

w_im = np.array([[1.0, 2.0],
                [2.0, 3.0]])

w_mo = np.array([[ -1.0, 1.0],
                [1.0, -1.0]])

b_im = np.array([0.3, -0.3])
b_mo = np.array([0.4, 0.1])

def middle_layer(x, w, b):
    u = np.dot(x, w) + b
    return 1 / (1 + np.exp(-u))

def output_layer(x, w, b):
    u = np.dot(x, w) + b
    return np.exp(u) / np.sum(np.exp(u))

x_1 = []
y_1 = []
x_2 = []
y_2 = []

for i in range(20):
    for j in range(20):
        inp = np.array([X[i], Y[j]])
        mid = middle_layer(inp, w_im, b_im)
        out = output_layer(mid, w_mo, b_mo)

        if out[0] > out[1]:
            x_1.append(X[i])
            y_1.append(Y[j])
        else:
            x_2.append(X[i])
            y_2.append(Y[j])

        
plt.scatter(x_1, y_1, marker="+")
plt.scatter(x_2, y_2, marker="o")
plt.show()

역시 C#으로 표현한 후,

using MathNet.Numerics.LinearAlgebra;
using System;
using System.Linq;

using np = PythonUtils;
using vector = MathNet.Numerics.LinearAlgebra.Vector<double>;
using matrix = MathNet.Numerics.LinearAlgebra.Matrix<double>;
using System.Collections.Generic;

class Program
{
    static void Main(string[] args)
    {
        var X = np.arange(-1.0, 1.0, 0.1).ToArray();
        var Y = np.arange(-1.0, 1.0, 0.1).ToArray();

        List<double> x1 = new List<double>();
        List<double> x2 = new List<double>();
        List<double> y1 = new List<double>();
        List<double> y2 = new List<double>();

        matrix w_im = GetMatrix(new[] { 1.0, 2.0 }, new[] { 2.0, 3.0 });
        matrix w_mo = GetMatrix(new[] { -1.0, 1.0 }, new[] { 1.0, -1.0 });

        vector b_im = GetVector(0.3, -0.3);
        vector b_mo = GetVector(0.4, 0.1);

        Func<vector, matrix, vector, vector> middle_layer = (x, w, b) =>
        {
            vector u = x * w + b;
            return 1 / (1 + np.exp(-u)); // sigmoid
        };

        Func<vector, matrix, vector, vector> output_layer = (x, w, b) =>
        {
            vector u = x * w + b;
            return np.exp(u) / np.sum(u); // softmax
        };

        for (int i = 0; i < X.Length; i++)
        {
            for (int j = 0; j < Y.Length; j++)
            {
                var inp = GetVector(X[i], Y[j]);
                var mid = middle_layer(inp, w_im, b_im);
                var outp = output_layer(mid, w_mo, b_mo);

                if (outp[0] > outp[1])
                {
                    x1.Add(X[i]);
                    y1.Add(Y[j]);
                }
                else
                {
                    x2.Add(X[i]);
                    y2.Add(Y[j]);
                }
            }
        }

        OutputImage("layer3_neuron_classification.png");

        void OutputImage(string fileName)
        {
            Gridmap grid = new Gridmap(471, 471);
            grid.Show(x1.ToArray(), y1.ToArray(), x2.ToArray(), y2.ToArray(), fileName);
        }
    }
}

실행해 보면 다음의 분류 상태를 볼 수 있습니다.

layer3_neuron_classification.png

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 7/7/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 166  167  168  169  170  171  172  173  [174]  175  176  177  178  179  180  ...
NoWriterDateCnt.TitleFile(s)
653정성태1/29/200922027.NET Framework: 122. XML Serializer를 이용한 값 복사: 성능은 어떨까!파일 다운로드1
652정성태1/22/200922793.NET Framework: 121. WPF - PrintTicket provider failed to bind to printer.
651정성태1/20/200920106.NET Framework: 120. 타입이 다른 배열끼리의 변환
650정성태1/19/200931929COM 개체 관련: 21. C/C++ 프로젝트에 /clr 옵션 적용으로 인한 COM 개체 사용 오류
649정성태1/18/200929451Windows: 38. Q1U UMPC에 Windows 7 베타 설치하기
648정성태1/18/200928132Windows: 37. Windows PE를 USB 메모리에 적용
647정성태1/18/200938278Windows: 36. Windows PE ISO 이미지 만들기 [1]
646정성태1/18/200931274디버깅 기술: 23. COMPLUS_ZapDisable - JIT 최적화 코드 생성 제어 [1]
645정성태1/11/200930083Windows: 35. 서명되지 않은 드라이버 로딩 방법
644정성태1/11/200921191Windows: 34. VPC 설치 후기 [2]
643정성태1/10/200926535Windows: 33. Windows 7 베타와 VMA 충돌 [1]
642정성태1/8/200925254개발 환경 구성: 34. Sysinternals의 모든 툴을 한번에 업데이트 하는 방법 [1]
641정성태1/7/200922402기타: 27. D820 - A09 바이오스 업데이트 프로그램 패치 [2]
640정성태1/4/200924156Team Foundation Server: 29. ClickOnce 응용 프로그램 배포를 Team Build에 추가.
639정성태1/4/200922085Team Foundation Server: 28. PFX 코드 서명을 포함한 프로젝트의 팀 빌드 실패 - MSB4018
638정성태1/3/200925113.NET Framework: 119. WPF - 의존 속성 정의에서 XamlParseException 발생하는 예 [2]
637정성태1/1/200927334기타: 26. 2008년 인기 순위 정리
636정성태12/31/200822439.NET Framework: 118. 2진 검색을 이용한 리스트 정렬 삽입파일 다운로드1
635정성태12/29/200825121오류 유형: 66. 파일 암호화 오류 - Recovery policy configured for this system contains invalid recovery certificate
634정성태12/29/200839438기타: 25. 가상 키보드 관련 정리 [4]
633정성태12/20/200824886기타: 24. RMClock for x64 [2]
632정성태12/19/200833494기타: 23. D820 - 배터리 없이 바이오스 업데이트 방법 [2]파일 다운로드1
631정성태12/10/200842200VC++: 36. Detours 라이브러리를 이용한 Win32 API - Sleep 호출 가로채기 [3]
630정성태12/9/200823017.NET Framework: 117. WPF - TreeView에서 항목이 펼쳐질 때 Cursors.Wait 사용파일 다운로드1
629정성태12/7/200832250.NET Framework: 116. 소켓 연결 시간 제한
628정성태12/6/200821072.NET Framework: 115. Marshal 타입 관련 2가지 자원 해제 메서드파일 다운로드1
... 166  167  168  169  170  171  172  173  [174]  175  176  177  178  179  180  ...