Microsoft MVP성태의 닷넷 이야기
Math: 64. C# - 3층 구조의 신경망(분류) [링크 복사], [링크+제목 복사],
조회: 18188
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 3층 구조의 신경망(분류)

지난 글에 이어서,

C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

아래의 책에 보면,

실체가 손에 잡히는 딥러닝
; http://www.yes24.com/Product/Goods/74258238

3층 신경망을 이용한 분류 예제를 파이썬 코드로 싣고 있습니다.

# http://nanya-kanya.net/index.php/1232/#outline__1_30

import numpy as np
import matplotlib.pyplot as plt

X = np.arange(-1.0, 1.0, 0.1)
Y = np.arange(-1.0, 1.0, 0.1)

w_im = np.array([[1.0, 2.0],
                [2.0, 3.0]])

w_mo = np.array([[ -1.0, 1.0],
                [1.0, -1.0]])

b_im = np.array([0.3, -0.3])
b_mo = np.array([0.4, 0.1])

def middle_layer(x, w, b):
    u = np.dot(x, w) + b
    return 1 / (1 + np.exp(-u))

def output_layer(x, w, b):
    u = np.dot(x, w) + b
    return np.exp(u) / np.sum(np.exp(u))

x_1 = []
y_1 = []
x_2 = []
y_2 = []

for i in range(20):
    for j in range(20):
        inp = np.array([X[i], Y[j]])
        mid = middle_layer(inp, w_im, b_im)
        out = output_layer(mid, w_mo, b_mo)

        if out[0] > out[1]:
            x_1.append(X[i])
            y_1.append(Y[j])
        else:
            x_2.append(X[i])
            y_2.append(Y[j])

        
plt.scatter(x_1, y_1, marker="+")
plt.scatter(x_2, y_2, marker="o")
plt.show()

역시 C#으로 표현한 후,

using MathNet.Numerics.LinearAlgebra;
using System;
using System.Linq;

using np = PythonUtils;
using vector = MathNet.Numerics.LinearAlgebra.Vector<double>;
using matrix = MathNet.Numerics.LinearAlgebra.Matrix<double>;
using System.Collections.Generic;

class Program
{
    static void Main(string[] args)
    {
        var X = np.arange(-1.0, 1.0, 0.1).ToArray();
        var Y = np.arange(-1.0, 1.0, 0.1).ToArray();

        List<double> x1 = new List<double>();
        List<double> x2 = new List<double>();
        List<double> y1 = new List<double>();
        List<double> y2 = new List<double>();

        matrix w_im = GetMatrix(new[] { 1.0, 2.0 }, new[] { 2.0, 3.0 });
        matrix w_mo = GetMatrix(new[] { -1.0, 1.0 }, new[] { 1.0, -1.0 });

        vector b_im = GetVector(0.3, -0.3);
        vector b_mo = GetVector(0.4, 0.1);

        Func<vector, matrix, vector, vector> middle_layer = (x, w, b) =>
        {
            vector u = x * w + b;
            return 1 / (1 + np.exp(-u)); // sigmoid
        };

        Func<vector, matrix, vector, vector> output_layer = (x, w, b) =>
        {
            vector u = x * w + b;
            return np.exp(u) / np.sum(u); // softmax
        };

        for (int i = 0; i < X.Length; i++)
        {
            for (int j = 0; j < Y.Length; j++)
            {
                var inp = GetVector(X[i], Y[j]);
                var mid = middle_layer(inp, w_im, b_im);
                var outp = output_layer(mid, w_mo, b_mo);

                if (outp[0] > outp[1])
                {
                    x1.Add(X[i]);
                    y1.Add(Y[j]);
                }
                else
                {
                    x2.Add(X[i]);
                    y2.Add(Y[j]);
                }
            }
        }

        OutputImage("layer3_neuron_classification.png");

        void OutputImage(string fileName)
        {
            Gridmap grid = new Gridmap(471, 471);
            grid.Show(x1.ToArray(), y1.ToArray(), x2.ToArray(), y2.ToArray(), fileName);
        }
    }
}

실행해 보면 다음의 분류 상태를 볼 수 있습니다.

layer3_neuron_classification.png

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 7/7/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 166  167  168  169  170  171  172  173  174  175  176  177  178  179  [180]  ...
NoWriterDateCnt.TitleFile(s)
484정성태3/17/200719502오류 유형: 31. SQL Compact Edition 설치 후 오류
483정성태3/17/200740923오류 유형: 30. x64 환경: .NET + COM 프로젝트 실행 시 오류 - 80040154 [2]
482정성태3/17/200730370Team Foundation Server: 17. 팀 프로젝트 접속 및 사용
481정성태3/17/200724321Team Foundation Server: 16. 팀 프로젝트 읽기 전용 사용자 등록
480정성태3/14/200722489.NET Framework: 86. GC(Garbage Collector)의 변화
479정성태3/14/200726476개발 환경 구성: 25. D820 - ReadyBoost 구동
478정성태3/14/200725773개발 환경 구성: 24. D820 고주파음 문제
477정성태3/14/200735045개발 환경 구성: 23. 비스타 x64 버전에서 서명되지 않은 드라이버 사용 [4]
476정성태3/9/200730461개발 환경 구성: 22. D820 노트북 - 설치 및 BitLocker 구성 [1]
475정성태3/6/200724880.NET Framework: 85. 공용 프로퍼티 자동 생성
474정성태3/5/200723073.NET Framework: 84. Lambda 표현식 응용 사례 [1]
473정성태3/4/200730175디버깅 기술: 14. TFS 오류 추적(TF53010, TF14105)
472정성태3/3/200729264디버깅 기술: 13. 예외 발생 시 Minidump 생성 - WinDBG [3]파일 다운로드1
471정성태3/1/200718481디버깅 기술: 12. Managed Method에 Break Point 걸기
469정성태2/28/200730025디버깅 기술: 11. (Managed) Main Method에 Break Point 걸기 [3]파일 다운로드1
470정성태3/1/200721397    답변글 디버깅 기술: 11.1. (Managed) Main Method에 Break Point 걸기 - 내용 보강
468정성태2/25/200731269COM 개체 관련: 20. 탭 브라우저의 윈도우 핸들 구하기 [3]
466정성태2/22/200722985Windows: 23. 롱혼 서버 코어 버전 [2]
465정성태2/21/200721965오류 유형: 29. TFS 관련 스케줄 작업 실패
464정성태2/25/200723137오류 유형: 28. TF10217, TF53010, TF14105 오류
463정성태2/21/200716138Team Foundation Server: 15. 포탈 사이트의 보고서 주소를 도메인 명으로 적용
462정성태2/13/200743389.NET Framework: 83. 라이브러리에 다국어 리소스 추가 방법 [4]파일 다운로드1
461정성태2/13/200721115오류 유형: 27. DLinq 예제 오류 : error: 26 - Error Locating Server/Instance Specified
460정성태2/13/200721353.NET Framework: 82. Orcas 1월 CTP에서 Linq 소스 컴파일 방법
459정성태2/17/200725361오류 유형: 26. "Automatic Updates" 서비스 CPU 100% 점유 현상 - 두 번째 이야기 [3]
458정성태2/12/200721855.NET Framework: 81. LINQ 개발 환경 설정 [1]
... 166  167  168  169  170  171  172  173  174  175  176  177  178  179  [180]  ...