Microsoft MVP성태의 닷넷 이야기
Math: 64. C# - 3층 구조의 신경망(분류) [링크 복사], [링크+제목 복사],
조회: 18250
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 3층 구조의 신경망(분류)

지난 글에 이어서,

C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

아래의 책에 보면,

실체가 손에 잡히는 딥러닝
; http://www.yes24.com/Product/Goods/74258238

3층 신경망을 이용한 분류 예제를 파이썬 코드로 싣고 있습니다.

# http://nanya-kanya.net/index.php/1232/#outline__1_30

import numpy as np
import matplotlib.pyplot as plt

X = np.arange(-1.0, 1.0, 0.1)
Y = np.arange(-1.0, 1.0, 0.1)

w_im = np.array([[1.0, 2.0],
                [2.0, 3.0]])

w_mo = np.array([[ -1.0, 1.0],
                [1.0, -1.0]])

b_im = np.array([0.3, -0.3])
b_mo = np.array([0.4, 0.1])

def middle_layer(x, w, b):
    u = np.dot(x, w) + b
    return 1 / (1 + np.exp(-u))

def output_layer(x, w, b):
    u = np.dot(x, w) + b
    return np.exp(u) / np.sum(np.exp(u))

x_1 = []
y_1 = []
x_2 = []
y_2 = []

for i in range(20):
    for j in range(20):
        inp = np.array([X[i], Y[j]])
        mid = middle_layer(inp, w_im, b_im)
        out = output_layer(mid, w_mo, b_mo)

        if out[0] > out[1]:
            x_1.append(X[i])
            y_1.append(Y[j])
        else:
            x_2.append(X[i])
            y_2.append(Y[j])

        
plt.scatter(x_1, y_1, marker="+")
plt.scatter(x_2, y_2, marker="o")
plt.show()

역시 C#으로 표현한 후,

using MathNet.Numerics.LinearAlgebra;
using System;
using System.Linq;

using np = PythonUtils;
using vector = MathNet.Numerics.LinearAlgebra.Vector<double>;
using matrix = MathNet.Numerics.LinearAlgebra.Matrix<double>;
using System.Collections.Generic;

class Program
{
    static void Main(string[] args)
    {
        var X = np.arange(-1.0, 1.0, 0.1).ToArray();
        var Y = np.arange(-1.0, 1.0, 0.1).ToArray();

        List<double> x1 = new List<double>();
        List<double> x2 = new List<double>();
        List<double> y1 = new List<double>();
        List<double> y2 = new List<double>();

        matrix w_im = GetMatrix(new[] { 1.0, 2.0 }, new[] { 2.0, 3.0 });
        matrix w_mo = GetMatrix(new[] { -1.0, 1.0 }, new[] { 1.0, -1.0 });

        vector b_im = GetVector(0.3, -0.3);
        vector b_mo = GetVector(0.4, 0.1);

        Func<vector, matrix, vector, vector> middle_layer = (x, w, b) =>
        {
            vector u = x * w + b;
            return 1 / (1 + np.exp(-u)); // sigmoid
        };

        Func<vector, matrix, vector, vector> output_layer = (x, w, b) =>
        {
            vector u = x * w + b;
            return np.exp(u) / np.sum(u); // softmax
        };

        for (int i = 0; i < X.Length; i++)
        {
            for (int j = 0; j < Y.Length; j++)
            {
                var inp = GetVector(X[i], Y[j]);
                var mid = middle_layer(inp, w_im, b_im);
                var outp = output_layer(mid, w_mo, b_mo);

                if (outp[0] > outp[1])
                {
                    x1.Add(X[i]);
                    y1.Add(Y[j]);
                }
                else
                {
                    x2.Add(X[i]);
                    y2.Add(Y[j]);
                }
            }
        }

        OutputImage("layer3_neuron_classification.png");

        void OutputImage(string fileName)
        {
            Gridmap grid = new Gridmap(471, 471);
            grid.Show(x1.ToArray(), y1.ToArray(), x2.ToArray(), y2.ToArray(), fileName);
        }
    }
}

실행해 보면 다음의 분류 상태를 볼 수 있습니다.

layer3_neuron_classification.png

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 7/7/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 181  182  183  184  [185]  186  187  188  189  190  191  192  193  194  195  ...
NoWriterDateCnt.TitleFile(s)
340정성태9/15/200619870개발 환경 구성: 13. ISO 파일을 가상 CD-ROM으로 매핑해주는 프로그램
339정성태9/14/200619344오류 유형: 11. ProtocolsSection?
338정성태2/4/200727595개발 환경 구성: 12. BUG: 웹 서비스에서 DataTable 사용하기 [2]파일 다운로드1
350정성태10/2/200620804    답변글 개발 환경 구성: 12.1. ASMX 2.0 and SchemaImporterExtensions파일 다운로드1
335정성태8/20/200628560디버깅 기술: 8. COM+ 서버 응용 프로그램에 대한 F5 디버깅 방법
334정성태8/20/200623778디버깅 기술: 7. VS.NET 2003/2005의 다중 프로젝트 디버깅
333정성태8/20/200624218개발 환경 구성: 11. COM+ 서버 활성화 보안 설정
331정성태8/27/200617165개발 환경 구성: 10. 최대 절전 모드와 VPC 네트워크 문제
330정성태8/20/200617487개발 환경 구성: 9. VPC로 구성하는 개인 환경
328정성태8/20/200635216개발 환경 구성: 8. AppVerifier 사용법 [1]
327정성태8/16/200632060개발 환경 구성: 7. ActiveX 서명 과정 자동화 [1]
326정성태8/16/200625842Team Foundation Server: 13. Sysnet 웹 사이트 TFS Migration
322정성태8/15/200620700개발 환경 구성: 6. 4GB 메모리 구성 [1]
316정성태9/20/200639819디버깅 기술: 6. .NET 예외 처리 정리 [6]
309정성태12/27/200640664디버깅 기술: 5. PDB 이야기 [7]
310정성태8/5/200627789    답변글 디버깅 기술: 5.1. PDB 파일에 따른 Debug 정보 - WinForm + Library 유형의 프로젝트파일 다운로드1
311정성태8/10/200627285    답변글 디버깅 기술: 5.2. PDB 파일에 따른 Debug 정보 - .NET 2.0 Web Application Project + Library 유형의 프로젝트
312정성태8/5/200629992    답변글 디버깅 기술: 5.3. PDB 파일에 따른 Debug 정보 - .NET 2.0 Web Site Model 유형의 프로젝트
313정성태8/12/200629132    답변글 디버깅 기술: 5.4. VS.NET 2005 디버그 모드에서의 PDB 파일 사용 차이 (1)
317정성태8/12/200626615    답변글 디버깅 기술: 5.5. VS.NET 2005 디버그 모드에서의 PDB 파일 사용 차이 (2)
318정성태8/12/200633042    답변글 디버깅 기술: 5.6. VS.NET 2005를 이용한 미니덤프 파일 분석 (1)
319정성태8/12/200628049    답변글 디버깅 기술: 5.7. VS.NET 2005를 이용한 미니덤프 파일 분석 (2) [1]
320정성태8/12/200632165    답변글 디버깅 기술: 5.8. WinDBG를 이용한 미니덤프 파일 분석 [1]
321정성태8/13/200636607    답변글 디버깅 기술: 5.9. Microsoft의 PDB 파일 관리
323정성태8/15/200638034    답변글 디버깅 기술: 5.10. Symbol Server 생성 [4]
324정성태8/15/200634798    답변글 디버깅 기술: 5.11. PDB 파일과 소스 코드
... 181  182  183  184  [185]  186  187  188  189  190  191  192  193  194  195  ...