Microsoft MVP성태의 닷넷 이야기
기타: 78. 도서 소개 - C#으로 배우는 암호학 [링크 복사], [링크+제목 복사],
조회: 17796
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

도서 소개 - C#으로 배우는 암호학

따끈따끈한 도서가 나왔는데요,

C#으로 이해하는 암호학 
; http://www.upaper.net/alexylee/1134590

덧셈 암호와 곱셈 암호를 mod 연산자 수식으로 설명한 부분이 재미있습니다. ^^

우선 알파벳 26글자에 대한 덧셈 암호를 보면,

C: 암호문
P: 평문
K: 키

C = (P + K) mod 26

P = (C + K-1) mod 26

로 표현이 됩니다. 덧셈 암호에서 키(K)에 해당하는 값이 있다면 그것의 역원을 더해 항등원 0이 나와야 하므로, 단순하게 K-1 = -K가 됩니다. 가령 K = 6일 때,

0 = (K + K-1) mod 26
0 = 6 + (-6) mod 26

결과가 나오고, 당연하겠지만 mod 26의 집합 Z26 = { 0, 1, 2, ..., 25 }에서 (현실적으로는 0을 제외한) 모든 요소에 대해 키로 선택될 수 있습니다.




이제 곱셈 암호를 볼까요?

C = (P * K) mod 26
P = (C * K-1) mod 26

선택된 키(K) 값에 대해 곱셈의 항등원인 1이 나오려면 1/K 값을 역원으로 선택하면 됩니다. 그렇긴 한데 일반적인 곱셈 연산이라면 1/K 값도 허용이 되겠지만, mod 연산에서는 실숫값이 허용이 안 된다는 점이 중요합니다. 예를 들어, P = 1, K = 3이라고 할 때,

3 = (1 * 3) mod 26
1 = (3 * (1/3)) mod 26

(C * K-1)의 결괏값이 정수가 될 것이기 때문에 mod 연산을 할 수 있는 경우도 있지만, P = 9, K = 3인 경우에는,

1 = (9 * 3) mod 26
? = (1 * (1/3)) mod 26

보는 바와 같이 mod 연산이 가능하지 않습니다. 여기서 재미있는 것은, 곱셈의 역원이 mod 연산에서 꼭 1/K 값일 필요는 없다는 점입니다. 결국, 곱셈의 항등원이 1만 나오면 되기 때문에 다음의 식을 만족하는 수가 있으면 되는데,

1 = (K * K-1) mod 26

가령 K = 3이라고 할 때, 집합 Z26 = { 0, 1, 2, ..., 25 }에서 찾아 보면, 9가 역원으로 될 수 있습니다.

1 = (3 * 9) mod 26

따라서, P = 7일 때, K = 3, K-1 = 9로 mod 연산을 하면,

21 = (7 * 3) mod 26
7 = (21 * 9) mod 26

암/복호화 연산이 자연스럽게 이뤄집니다.

여기서 더욱 재미있는 것은, 곱셈 연산의 특성상 0이 나오면 복호화를 할 수 없다는 점입니다. 가령, P = 13, K = 2라고 하면,

0 = (13 * 2) mod 26
0 = (0 * K-1) mod 26

(사실 2에 대한 mod 26 연산의 역원도 존재하지 않지만) 어떤 inv(K) 값이 와도 결과가 0이 되므로 복호화 연산이 가능하지 않게 됩니다. 따라서, 곱셈 암호의 경우 (덧셈 암호와는 달리) 집합 Z26 = { 0, 1, 2, ..., 25 }에서 키로 선택되려면 mod 26의 결과가 0이 나오면 안 된다는 제약이 있습니다.

이를 달리 말하면, 26과 서로소인 수만 키로써 자격이 있게 됩니다. 따라서 위에서 예를 든 { 2, 13 } 쌍을 비롯해 { 4, 13 }, { 6, 13 }, { 8, 13 }, { 10, 13 }, { 12, 13 }, { 13, 12 }, { 14, 13 }, { 16, 13 }, { 18, 13 }, { 20, 13 }, { 22, 13 }, { 24, 13 }의 쌍들은 모두 mod 26에 대해 0이 나오므로 { 2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24 }는 키값으로 선택될 수 없습니다.

이것을 다르게 생각해 보면, 만약 "mod n"의 연산에서 'n' 값이 소수라면 당연히 집합 Zn = { 0, 1, 2, ..., n - 1 }의 (0과 현실적으로 1을 제외한) 모든 값들이 키로 선택될 수 있다는 결론이 나옵니다.




이에 기반을 둬서 RSA의 암호화에 해당하는 mod 계산을 볼까요?

[암호화]
C = Pk mod N

[복호화]
Cinv(k) ≡ P mod N

(덧셈 암호, 곱셈 암호로 바라보던 시각을 적용해 보면) RSA는 지수 암호라고 생각할 수 있습니다. (실제로 "지수 암호"라는 단어는 안 쓰는 것 같습니다. ^^)

다시 역으로 달리 생각해 보면, 곱셈 암호를 (쉽게 복호화 키를 알아낼 수 있어 부적절하지만) 비대칭 암호화의 한 사례로 볼 수 있습니다. 즉, 이 글의 예제에서 보면 공개키로 (3, 26) 쌍을 사용하고 개인키로 (9, 26) 쌍을 사용해 암호화 키와 복호화 키가 다른 것입니다.

이렇게 재미있는 이야기들이 ^^ 책에 나오니, 관심 있으신 분들은 e-book을 구매하시면 도움이 될 것입니다.




참고로, 이 글에 실은 수식은 책에도 나오지만 다음과 같은 웹상의 자료에도 있어 인용을 해봤습니다.

치환암호
; http://wiki.hash.kr/index.php/%EC%B9%98%ED%99%98%EC%95%94%ED%98%B8

그리고 기왕에 언급이 되었으니 다음의 정리된 글들도 한 번쯤 보시고. ^^

RSAParameters 와 System.Numerics.BigInteger 이야기
; https://www.sysnet.pe.kr/2/0/1295

RSAParameters와 RSA
; https://www.sysnet.pe.kr/2/0/11140

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자
; https://www.sysnet.pe.kr/2/0/1300

C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자 - 두 번째 이야기
; https://www.sysnet.pe.kr/2/0/10925




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 11/7/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13667정성태7/7/20246621닷넷: 2273. C# - 리눅스 환경에서의 Hyper-V Socket 연동 (AF_VSOCK)파일 다운로드1
13666정성태7/7/20247700Linux: 74. C++ - Vsock 예제 (Hyper-V Socket 연동)파일 다운로드1
13665정성태7/6/20247880Linux: 73. Linux 측의 socat을 이용한 Hyper-V 호스트와의 vsock 테스트파일 다운로드1
13663정성태7/5/20247474닷넷: 2272. C# - Hyper-V Socket 통신(AF_HYPERV, AF_VSOCK)의 VMID Wildcards 유형파일 다운로드1
13662정성태7/4/20247491닷넷: 2271. C# - WSL 2 VM의 VM ID를 알아내는 방법 - Host Compute System API파일 다운로드1
13661정성태7/3/20247413Linux: 72. g++ - 다른 버전의 GLIBC로 소스코드 빌드
13660정성태7/3/20247522오류 유형: 912. Visual C++ - Linux 프로젝트 빌드 오류
13659정성태7/1/20247858개발 환경 구성: 715. Windows - WSL 2 환경의 Docker Desktop 네트워크
13658정성태6/28/20248235개발 환경 구성: 714. WSL 2 인스턴스와 호스트 측의 Hyper-V에 운영 중인 VM과 네트워크 연결을 하는 방법 - 두 번째 이야기
13657정성태6/27/20247911닷넷: 2270. C# - Hyper-V Socket 통신(AF_HYPERV, AF_VSOCK)을 위한 EndPoint 사용자 정의
13656정성태6/27/20248082Windows: 264. WSL 2 VM의 swap 파일 위치
13655정성태6/24/20247850닷넷: 2269. C# - Win32 Resource 포맷 해석파일 다운로드1
13654정성태6/24/20247787오류 유형: 911. shutdown - The entered computer name is not valid or remote shutdown is not supported on the target computer.
13653정성태6/22/20247937닷넷: 2268. C# 코드에서 MAKEINTREOURCE 매크로 처리
13652정성태6/21/20249245닷넷: 2267. C# - Linux 환경에서 (Reflection 없이) DLL AssemblyFileVersion 구하는 방법파일 다운로드2
13651정성태6/19/20248487닷넷: 2266. C# - (Reflection 없이) DLL AssemblyFileVersion 구하는 방법파일 다운로드1
13650정성태6/18/20248410개발 환경 구성: 713. "WSL --debug-shell"로 살펴보는 WSL 2 VM의 리눅스 환경
13649정성태6/18/20247957오류 유형: 910. windbg - !py 확장 명령어 실행 시 "failed to find python interpreter" (2)
13648정성태6/17/20248278오류 유형: 909. C# - DynamicMethod 사용 시 System.TypeAccessException
13647정성태6/16/20249344개발 환경 구성: 712. Windows - WSL 2의 네트워크 통신 방법 - 세 번째 이야기 (같은 IP를 공유하는 WSL 2 인스턴스) [1]
13646정성태6/14/20247758오류 유형: 908. Process Explorer - "Error configuring dump resources: The system cannot find the file specified."
13645정성태6/13/20248197개발 환경 구성: 711. Visual Studio로 개발 시 기본 등록하는 dev tag 이미지로 Docker Desktop k8s에서 실행하는 방법
13644정성태6/12/20248868닷넷: 2265. C# - System.Text.Json의 기본적인 (한글 등에서의) escape 처리 [1]
13643정성태6/12/20248310오류 유형: 907. MySqlConnector 사용 시 System.IO.FileLoadException 오류
13642정성태6/11/20248198스크립트: 65. 파이썬 - asgi 버전(2, 3)에 따라 달라지는 uvicorn 호스팅
13641정성태6/11/20248673Linux: 71. Ubuntu 20.04를 22.04로 업데이트
1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...